Anti-replay sequence number subspaces

draft-ponchon-ipsecme-anti-replay-subspaces

Mohsin Shaikh (presenter), Paul Ponchon, Hadi Dernaika, Pierre Pfister, Guillaume Solignac
IETF 117 @ San Francisco
Quick Recap

- Proposal to use multiple sequence number subspaces as an alternative to creating multiple child SAs for multi-core performance
- Additionally support QoS and traffic engineered paths
- In draft-ponchon-ipsecme-anti-replay-subspaces-01 we added IKE transform to negotiate max number of subspaces
- We also increased the sequence number field in ESP packet to 64-bits with subspace ID stored in most significant 16 bits
Implementation

- We are working on implementing this in VPP open-source data-plane (https://fd.io)
- We are also working on a closed source implementation intended for deployment in Cisco Meraki’s devices in the coming months
- The subspace ID must be between 0 to “N-1” where “N” is the max number of subspaces negotiated by IKE.
- ESN negotiation must be disabled as negotiating subspaces implies a 16-bit subspace ID and 48-bit sequence number counter.
Updates in draft-02 since IETF 116 (contd.)

- The 48-bit sequence number counter must not be allowed to cycle. A 1 Tbps would exhaust a subspace in over 938 hours (39 days). Assuming ethernet frames of 1500 bytes, \(T = 2^{48} \text{ (pkts)} \times 1500 \text{ (B/pkt)} \times 8 / 10^{12} \text{ (bps)} = \sim 3.4 \times 10^6 \text{ seconds} = \sim 938 \text{ hours.} \)
- ICV calculation begins from start of ESP SPI field to end of ESP payload.
- IPR disclosure from Cisco Systems
We support draft-mrossberg-ipsecme-multiple-sequence-counters being presented today which discusses using multiple sequence number counters.

We also welcome any support on the mailing list or in person.

We intend to deploy this on Cisco Meraki’s ~2 million (and growing) devices worldwide.

Should the working group work to adopt and help us deploy a standard or should this remain a draft based extension?