TreeDN: Tree-based CDNs for Live Streaming to Mass Audiences (draft-ietf-mops-treedn)

Lenny Giuliano <lenny@juniper.net>
Chris Lenart <chris.lenart@verizon.com>
Rich Adam <richard.adam@geant.org>
Problem Statement

• With live audiences exploding combined with increasing bitrates (4K/8K/AR), are we at an inflection point?
 • NFL Thurs Night FB on Amazon Prime (10-15M streaming viewers)
 • NFL Sunday Ticket on YouTubeTV
 • 2023 Cricket IPL Final- 32M concurrent streams

• Live Streaming is not the same as On-Demand Streaming
 • Expectations for low latency means shorter playout buffers
 • < 10s to match traditional broadcast TV, much less for micro-betting
 • Join rates are vastly different
 • Smooth/predictable for on-demand, ~ step function for live events
TreeDN: Tree-based CDNs

- Leverages native and overlay concepts to deliver service to end users even when parts of the network don’t support multicast
 - Native (On-Net): SSM
 - Overlay: AMT (RFC7450)

- Incremental Deployment
 - Multicast-enabled parts of network enjoy benefits, unicast-only parts are tunneled over
 - Most importantly, end users receive the service (eg, no dependency on last mile provider)
TreeDN Components

• Native (On-Net): SSM
 • SSM vastly simplifies multicast deployment, solves the "It’s too complex" problem
 • Usually PIM-SSM, but could also use mLDP, GTM, BGP-MVPN, BIER, SR-P2MP

• Overlay: AMT (RFC7450)
 • Dynamically-built tunnels in host/app "hop over" unicast-only parts of network
 • Simplifies "last mile"- can avoid wifi and other in-home issues
 • Solves the "All or Nothing" and "Chicken & Egg" problems
 • Could also use LISP or any other overlay networking technologies
TreeDN = SSM + AMT
CDN’s without Multicast
CDN’s with Multicast: TreeDNs

• Replication point closer to receivers, only to relays with nearby receivers
 • If deployed on existing network infra (CDN-on-a-Chip): $0 capex... and maybe $0 opex, too
TreeDN Benefits

• More efficient network utilization
 • Delivers existing live streaming content at an order of magnitude lower cost
 • Scales to makes new content viable (eg, AR livestreaming to mass audiences, microbetting)
 • Sustainability/Green Networking

• Allows SPs to offer new Replication-as-a-Service (RaaS)
 • At potentially zero additional cost to deliver service (if existing infra support AMT)
 • Open, standards-based architecture with widely available protocols
 • Far less coordination between CP and CDN
 • No need for data storage, protection, key management- CDN just forwards packet

• Addresses fundamental problems with network replication on Internet
 • Incremental deployment, overlay networking, mcast over WIFI

• Democratizes and decentralizes content sourcing
 • Is it healthy for the Internet (and society) that a small handful of companies control nearly all content distribution?
Use Cases/Applicability

• Any multi-destination content
 • Live streaming (audio/video/AR/telemetry)
 • Large File SW Updates (eg, OS updates)
Updates from -01 to -02 Draft

• Added diagram

Figure 1: TreeDN Provider Example
Updates from -01 to -02 Draft

• Added section on Transport Layer diffs between TreeDN and traditional unicast-based CDNs (Sect 7)
 • Pointers to existing work
 • Reliability (FEC)
 • ABR- see DVB-MABR, RFC8085
 • Authorization/Encryption- see DVB-MABR, Group Key Management using IKEv2, mcast QUIC

• Renamed Intro -> Problem Statement
Next Steps

• Seeking more reviews
• What’s else?
Reference Slides
Network-Based Replication

• Multicast has been fairly successful in some places
 • Financials, Video Distr, VPN SPs, some enterprises

• Internet Multicast- not so much...
 • So what went wrong?
The Problems with Internet Multicast

1. “All or Nothing” Problem
 • Every L3 hop (router/fw) between source and destination must be multicast-enabled

2. “It’s Too Complex” Problem
 • Perceived benefit not worth the cost of deploying and operating

3. “Chicken and Egg” Problem
 • No multicast audience because no multicast content, and vice versa

• Good News: Network Replication technologies are now available to address these problems
Summary: Crossing Supply/Demand Curves for Live Streaming on the Internet

• Demand: exploding livestream audience sizes + increasing bitrates (4K/8K/AR)
• Supply: network-based replication is easier and more available than ever
• TreeDN describes a CDN model optimized to address the increasing strain of live streaming on the network, and enables new types of content delivery