MOQ Usages

Building audio/video applications over MOQT

Cullen/Suhas/Mo
Agenda for this session

This draft and presentation is only about followings architectural questions

1) Ways that audio/video/media maps to MOQT Objects
 ○ (eg. frame per object, CMAF Segment or Chunk per object, slice per object, …)

2) Which QUIC streams is used to send a given MOQT Object
 ○ (eg. Stream per object, stream per group, stream per priority, stream per track …)

3) Mapping of Simulcast / SVC video to MOQT Model
 ○ (eg. One track all layers, Track per layer, …)

Have tried to document option that people have requested

Document some of the pro/cons

In 10 minutes do not expect us to resolve any of these, just look at framework for discussion going forward.
Metrics to consider in looking at solutions

- How this interacts with Priority schemes
- Latency on lossy / constrained networks
- Bandwidth Overhead / Efficiency
- Complexity
- Future Flexibility
Reminder about what MOQT defines today

MOQT identifies Tracks, Group and Objects as opaque entities

Applications define
 - How application data us mapped to tracks/groups/objects

Also need to define how that is mapped to QUIC
MOQT Object Model Mapping

Map "Application Data Units" \(\rightarrow\) MOQT Objects/Groups/Tracks

Application defined and controlled.

Agnostic to Relays.

Application Data Units can be :-

- Encoded Frame,
- Encoded Slice,
- CMAF Segment, CMAF Chunk,
- Something application specific that we haven’t seen so far.
MOQT Model - One Encoded Frame Per Object

Pros
- Publish/Subscribe happens at Frame Boundaries
- Appropriate for Low Latency use-cases
- Allows application concealment at frame boundaries

Cons
- Consumer need to order out of order objects
MOQT Model - One CMAF Segment per Object

Pros
- Media delivered in decode order

Cons
- Object duration maps GOP duration
- Prone to HOL Blocking for object consumption
MOQT Model - One Encode Slice per Object

Pros
- Publish/Subscribe happens at Slice boundaries
- Appropriate for Low Latency use-cases

Cons
- More complex
- Out of order handling needs to both frame and slice aware, at consumer
MOQT Model - One CMAF Chunk per Object

Pros
- Publish/Subscribe happens at CMAF Chunk boundaries
 - Typically one or more Encoded Frames
- Appropriate for Low Latency use-cases

Cons
- Consumer need to order out of order objects
MOQT QUIC Mapping

Map **MOQT Objects/Groups/Tracks** → QUIC Streams

Modifiable by Relays

Mapping options :-

- One QUIC Stream per Object
- One QUIC Stream per Group
- One QUIC Stream per Track
- One QUIC Stream per Priority
- One QUIC Stream per Multiple Tracks
Transport Mapping - One QUIC Stream per Object

Pros
- Less prone to HOL Blocking when Object is a frame/slice/chunk
- GOP Object implies decoder order
- Relays cache at Frame/Chunk boundaries

Cons
- GOP Object is more prone to HOL Blocking
- Lot of short lived streams when Objects are frames/slices/chunks
- Consumers need to handle out of order objects
- Relays cache at the GOP boundaries
Transport Mapping - One QUIC Stream per Group

Pros
- Stream lifetime matches GOP Duration
- Less number of streams overall
- Group implies natural decoding order.

Cons
- More prone to HOL Blocking, esp when objects(s) duration is longer.
- May need complex & custom API when object is an entire GOP.
Transport Mapping - One QUIC Stream per Track

Pros
- Stream lifetime matches Track Duration → Lowest number of streams overall
- Least complex mapping, may serve best over well engineered links (say Datacenters)

Cons
- More prone to HOL Blocking under lossy networks
- May need complex byte stream API when object is an entire GOP
Transport Mapping - One QUIC Stream per Priority

Pros
- Beneficial for low latency use-cases
- Number of streams map to priority levels set by the application

Cons
- Prioritization is not trivial, needs more study and experimentation
SVC - All layers in one track

- Catalog indicates track as SVC source
- Dependency information for all the layers are encoded in the bitstream and/or container.
- Simple to support in MOQT object model
- However, lacks selective subscriptions of layers by the subscribers
SVC - One Layer Per Track

- Catalog indicates tracks, layers and dependencies
- Consumers use objects across related tracks
- Allows selective subscriptions across layers
- Allows congested links to drop layers

Track2 depends on Track1
Track3 depends on Track1
Track4 depends on Track2, Track3
Proposal

Next Steps

- Don’t decide now …
- Collect more implementation data of how this works
- Document pro/cons and results

Get this conversation to be data driven.

Use this information 3 to 6 months down the road to decide which technique or techniques need to be part of MoQ Transport.
Backup Slides