Identity Chaining Across Trust Domains

IETF 117 OAuth Working Group Meeting

Arndt Schwenkschuster (Microsoft)
Pieter Kasselman (Microsoft)
Kelley Burgin, (MITRE)
Mike Jenkins (NSA-CSS)
Agenda

• The challenge of Identity Chaining
• A (proposed) approach
• What’s in the draft
• Next Steps
Why Identity Chaining Across Trust Domains

Transaction Tokens
- Who was the Resource Owner?
- What authorization did they grant?
- What other entities were involved?
- What authorization did they have?

Image Courtesy Justin Richer (justin@bspk.io)
Why Identity Chaining Across Trust Domains

Image Courtesy Justin Richer (justin@bspk.io)
Why Identity Chaining Across Trust Domains

Different domain, same questions
- Who was the Resource Owner?
- What authorization did they grant?
- What other entities were involved?
- What authorization did they have?
Why Identity Chaining Across Trust Domains

Resource Owner

Authorization Server Domain 1

Client

Gateway

Foo

Bar

Authorization Server Domain 2

Gateway

Baz

Qux

Image Courtesy Justin Richer (justin@bspk.io)
Proposal Concepts
Getting an Authorization Grant for another Trust Domain

1. Client in Domain 1 exchanges a token with the AS in Trust Domain 1 to get an authorization grant for the AS in Trust Domain 2

2. Client uses the authorization grant with the AS in Trust Domain 2 to get an access token

3. Client presents the access token to the Resource server in Trust Domain 2

Token Exchange (RFC 8693)

Assertion Framework (RFC 7521)
Generic Cross-Domain Identity Chaining

1. Token Exchange – Obtain Authorization Grant

2. Assertion Framework – Get Access Token

3. Present Access Token

Trust Domain 1
Authorization Server Domain 1
Gateway
Foo
Bar

Trust Domain 2
Authorization Server Domain 2
Gateway
Baz
Qux
Resource Server as Client

1. Token Exchange – Obtain Authorization Grant

2. Assertion Framework – Get Access Token

3. Present Access Token
Authorization Server as Client

1. Authorization Server Domain 1
 - Token Exchange – Obtain Authorization Grant

2. Token Exchange – Obtain Authorization Grant
 - Assertion Framework – Get Access Token

3. Present Access Token
 - Authorization Server Domain 2

Client 2

Token Exchange – Request access token for domain 2

Trust Domain 1

Gateway

Foo

Bar

Trust Domain 2

Gateway

Baz

Qux
What’s in the draft

https://datatracker.ietf.org/doc/draft-identity-chaining/
Section 2.2
Generic Cross-Domain Identity Chaining
Appendix A.1
Resource Server acting as Client
Appendix A.2
Authorization
Server acting as Client
Token Exchange Profile

2.4.1. Request

The parameters described in section 2.1 of [RFC8693] apply here with the following restrictions:

requested_token_type

OPTIONAL according to [RFC8693]. In the context of this specification this parameter SHOULD NOT be used. See Authorization grant type (Section 2.4.3).

scope

OPTIONAL. Additional scopes to indicate scopes included in returned authorization grant. See Claims transcription (Section 2.6).

resource

REQUIRED if audience is not set. URI of authorization server of targeting domain (domain B).

audience

REQUIRED if resource is not set. Well known/logical name of authorization server of targeting domain (domain B).

2.4.2. Processing rules

- If the request itself is not valid or if the given resource or audience are unknown, or are unacceptable based on policy, the authorization server MUST deny the request.
- The authorization server MAY add, remove or change claims. See Claims transcription (Section 2.6).
2.5.1. Request

If the authorization grant is in the form of a JWT bearer token, the client SHOULD use the "JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants" as defined in [RFC7521]. Otherwise, the client SHOULD request an access token using the "Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants" as defined in [RFC7521] (Section 4.1). For the purpose of this specification the following descriptions apply:

grant_type
- REQUIRED. In context of this specification clients SHOULD use the type identifier returned by the token exchange (issued_token_type response). See authorization grant type (Section 2.4.3) for more details.

assertion
- REQUIRED. Authorization grant returned by the token exchange (access_token response).

scope
- OPTIONAL.

The client MAY indicate the audience it is trying to access through the scope parameter or the resource parameter defined in [RFC8707].

2.5.2. Processing rules

All of [RFC7521] (Section 5.2 in specific) applies, along with the following processing rules:

- The request MUST be denied if the presented authorization grant does not include an "aud" claim identifying the authorization server that processes the request.
- The authorization server SHOULD deny the request if it is not able to identify the subject.
- Due to policy the request MAY be denied (for instance if the federation from domain A is not allowed).
Claims Transcription

2.6. Claims transcription

Authorization servers MAY transcribe claims when either producing authorization grants in the token exchange flow or access tokens in the assertion flow.

* Transcribing the subject identifier: Subject identifier can differ between the parties involved. For instance: A user is known at domain A by "johndoe@a.org" but in domain B by "doe.john@b.org". The mapping from one identifier to the other MAY either happen in the token exchange step and the updated identifier is reflected in returned authorization grant or in the assertion step where the updated identifier would be reflected in the access token. To support this both authorization servers MAY add, change or remove claims as described above.

* Selective disclosure: Authorization servers MAY remove or hide certain due to privacy requirements or reduced trust towards the targeting trust domain. To hide and enclose claims [SD-JWT] MAY be used.

* Controlling scope: Clients MAY use the scope parameter to control transcribed claims (e.g. downscooping). Authorization Servers SHOULD verify that requested scopes are not higher privileged than the scopes of presented subject_token.

* Including authorization grant claims: The authorization server performing the assertion flow MAY leverage claims from the presented authorization grant and include them in the returned access token. The populated claims SHOULD be namespace or validated to prevent the injection of invalid claims.

The representation of transcribed claims and their format is not defined in this specification.
Next steps
Open Issues

Scope
- Consider limiting token formats to JWT
- How to transcribe claims
- Additional profile of Token Exchange

Editorial
- Update docname to draft-schwenkschuster-oauth-identity-chaining-00
- Editorial: Remove repetitive text
- Replace cURL commands with "on-the-wire" examples
- Add correct reference for RFC 7523
- Clarify requirements for "aud" claim
- Update Acknowledgements
- Correct/Update Authorization Server Discovery

https://github.com/arndt-s/ietf-identity-chaining/issues
Next Steps

• Feedback on approach?
• Interest in the WG to pursue this problem?
• Interest in the WG to pursue this work?
Questions?