Privacy Pass and W3C

IETF 117 - PRIVACYPASS - 2023-07

Steven Valdez - svaldez@google.com
Agenda

- Private State Tokens
- W3C Groups
Private State Tokens

- Explainer/Spec: https://github.com/WICG/trust-token-api
- Web API for use on different websites.
- Some origins register as “Issuers” (effectively a joint privacypass Attester/Issuer).
- On the Issuer first-parties and places they are embedded as third-parties, they can issue tokens based on first/third-party information.
- On other sites, the Issuers can redeem tokens.
- Primary use is for Antifraud/IVT (Invalid Traffic Detection)
 - CAPTCHAs
 - Embedded Botted Traffic Detection
 - ...
Private State Tokens (Versioning)

- Formerly known as Trust Tokens
- Ran an Origin Trial through May 2022.
 - Limited experimental results as many IVT/AF solutions are reliant on consistent access to features.
- Launched PSTV1 in Chrome 114 in May
 - Currently ramping up to 100% Stable.
- Plans for a backwards-compatible “vStandard” version that aligns closer to existing specs
 - privacypass
 - Better structured header compatibility
PST: Existing extensions to privacypass

- Consistent way of fetching keys from the various issuers and caching the results.
 - draft-group-privacypass-k-check
- Due to latency, batched token issuance is critical.
 - draft-robert-privacypass-batched-tokens
- Public Metadata in tokens
 - Currently performed by choice of keys.
 - draft-hendrickson-privacypass-public-metadata-issuance
PST: Deltas from privacypass (Protocol/Deployment)

- Method of distributing consistent keys to clients
 - Optimization to avoid unnecessary fetches.
 - Chrome: PST currently has a component updater to distribute fetched keys.
 - Generic: Having some sort of bulk/batch distribution from a k-check style server may be useful. Use of headers for operations rather than separate requests.

- Key Commitment Format
 - Expiry to allow for differing expirations between different keys.
 - privacypass Cache-Control only allows global expiry for the entire commitment.
 - Use of .well-known vs configured endpoint
 - PST requires “registering” an issuer, allowing for multiple issuers to use the same infrastructure for serving keys.
PST: Differences from privacypass (Web)

- PST attaches the payloads for PST operations (issuance/redemption) in Sec-Private-State-Token headers.
 - Generally AF/IVT collects additional information to use as part of making the issuance.
 - Using the existing application/private-token-request headers would either require request matching different requests together on the server-side or embedding the additional data as additional headers.

- PST operations are initiated by client code (fetch, XHR, iframe attributes)
 - Generally web-based issuers are making decisions as part of an interaction with a web page instead of as part of a resource load.

- Addition of a redemption record for web redemptions
 - Returned from a redemption of a token and cached on the client-side.
 - Cookie/Local Storage equivalent, can be replaced by client code to take the redemption response and store it in local storage.
PST: Open issues to align with privacypass

- These are changes PST will need to make for vStandard to align.
- Token type is different from privacypass.
- Key Commitment Format
 - protocol_version -> Token-Type
- Potentially support the auth-scheme/WWW-Authenticate API in addition to the client code.
W3C Groups

- **Anti Fraud CG**
 - Thinking about problems with coming up with verdicts about potential bad traffic in privacy-preserving ways.
- **PATCG**
 - Advertising ecosystem APIs that needs some form of privacy preserving authentication.
- **Privacy CG**
 - General privacy APIs
- **Webauthn/Web Payments**
 - Attesting to properties of users without full identification.