Computing-Aware Traffic Steering (CATS)

CATS Chairs
Adrian Farrel (adrian@olddog.co.uk)
Peng Liu (liupengyjy@chinamobile.com)

IETF-117 – San Francisco – July 2023
History

• Some drafts in 2020 on *Dynamic Anycast (Dyncast) for Compute First Networking*

• Renamed *Compute Aware Networking (CAN)*
 • BoF at IETF-113 online and in Vienna (March 2022)
 • Presented at RTGWG and TSVWG at IETF-114 in Philadelphia (July 2022)
 • Mailing list for CAN (created October 2022)
 • https://www.ietf.org/mailman/listinfo/can
 • BoF at IETF-115 in London (November 2022)
 • Clear interest in the work, but very unfocussed meeting
 • A pile of Internet-Drafts got written
 • https://datatracker.ietf.org/doc/search/?&name=computing-aware&sort=&activedrafts=on&olddrafts=on
 • Draft charter for a CAN working group written by proponents
 • Reviewed by the IETF community

• Renamed to *Compute Aware Traffic Steering (CATS)*
 • Slightly more accurate name, avoids name conflict with Controller Area Networking
 • Area Directors decided to form a working group without further BoFs
 • First meeting at IETF-116 in Yokohama (March 2023)
 • Old drafts renamed, and many new drafts posted
Charter Scope

• There are often multiple service instances
 – Geographically distributed to multiple sites
 – A single site may support multiple instances of a service

• The services provided on computing platforms and are generically referred to as "compute services".

• The performance experienced by clients depends on:
 – Network metrics such as bandwidth and latency
 – Compute metrics such as processing, storage capabilities, and capacity

• How can the network edge steer traffic between clients of a service and sites offering the service?
But before we start - Groundwork

- CATS is not chartered to work on solutions
- Do the groundwork first
 - Problem statement
 - Use cases
 - Requirements
 - Framework and architecture
 - Metrics for Compute and requirements for distribution
 - Analyse usefulness of existing protocols and tools
- Only one RFC explicitly in charter
 - CATS Framework and Architecture
Current Status

• It’s early days
 – But some of the work has been around for a while
• Just adopted a draft for problem statement, use cases, requirements
• Meeting (tomorrow, Thursday, 9.30am)
 – Terminology
 – Use cases
 – Requirements
 – Metrics
So, what’s it all about?

• Traffic targets a service that uses computing resources
 • The local network edge selects a remote edge that provides access to one or more instances of that service
 • May select a specific service instance
 • Note that the application and host do not participate in this choice
 • The local network edge steers the traffic to the remote edge
 • Network might also be traffic engineered
• The choice of instance depends on:
 • Service requirements
 • Capabilities of server
 • Load on server
 • Capabilities of network
 • Load on network
What are the Use Cases?

- Still firming this up
- Applications that have been mentioned...
 - Real-time image capture and processing
 - Interconnected and event-aware “smart cars”
 - Multi-player game servers
 - Networked AR/VR
 - Holographic presence conferencing
 - Digital twin
 - SD-WAN
 - Further uses cases being discussed
- Objective is not a complete list
 - We want a few compelling use cases
- Differences and commonalities
 - The use cases all have different network and service requirements
 - All need to move data, have it processed, and get a response
What are the Requirements?

• This is also work in progress – just a summary overview

• Mark traffic for a “group of service instances”
 • Anycast addresses are suggested

• Collect information from the network (topology and metrics)
 • Already do this, but may need supplements for (e.g.) latency

• Collect information from service instances
 • Service locations (membership of Anycast address group)
 • Service capabilities
 • Service location loading (metrics)

• We may also need to know:
 • Service demand requirements
 • A way of batching packets into service requests
First Draft Functional Architecture

Traffic steered to service instance

Collect information about the network

NOT CONSENSUS