Secure Asset Transfer Protocol (SATP)

Future Extensions: Asset And Process State Queries

V. Ramakrishna (IBM)
IETF 117: Secure Asset Transfer Working Group
San Francisco, CA
July 25, 2023

Interoperation Modes Using SATP Architecture

Network 1

Network 2

SATP Gateway

SATP Gateway

Asset Transfer

Asset Exchange

Data Sharing/Transfer

WRITE

WRITE

WRITE

READ

WRITE

IETF 117: SATP Working Group
Requirements for Cross-Network Workflows

• Each network runs processes (business workflows) managing digital assets
• Processes in two different networks may be interdependent, and therefore require interlinking
 • Cross-network of multi-network workflow is the desired outcome, as long as security, privacy, and network independence is maintained
 • See https://datatracker.ietf.org/doc/draft-ietf-satp-usecases/ for examples
• Asset transfer is one of these interdependencies, but may typically be the culmination of a longer workflow
 • Before an asset is transferred, it may need to be discovered by another network,….
 • And/or its properties and current state may need to be queried from another network
 • Hence the need for a data sharing protocol to complement an asset transfer protocol whereby the state of an asset or the process managing it, can be queried by another network
 • Proof or evidence of authenticity is a key artifact, to enable network-to-network trust
 • Example: Requesting and finding evidence of liquidity in the form of tokenized CBDC
 • Just like with asset transfer, the network and the query details can be opaque to the inter-gateway protocol
Ledger State Views and Addressing

• Views and view addresses: https://datatracker.ietf.org/doc/draft-ramakrishna-satp-views-addresses/

• Data sharing protocol for querying view addresses and receiving view responses: https://datatracker.ietf.org/doc/draft-ramakrishna-satp-data-sharing/

• Peer-reviewed publications
 • Verifiable Observation of Permissioned Ledgers, ICBC 2021: https://arxiv.org/abs/2012.07339

• Open-source implementation within Hyperledger Cacti: https://github.com/hyperledger/cacti/tree/main/weaver

• General-purpose addressing and query-response protocol
Remote State Views and Addressing

- View is information derived from ledger
- View is also proof of state of a blockchain
- Especially significant in permissioned ledgers
View Addressing

Hyperledger \(<gw-address>/\langle network-id \rangle/\langle channel-id \rangle/\langle chaincode-id \rangle: \langle function-id \rangle: \langle arg-1 \rangle: \langle arg-2 \rangle: \ldots \rangle\)

- localhost:9080/network1/mychannel:simplestate:Read:a

Corda \(<gw-address>/\langle network-id \rangle/\langle cordapp-node-addresses \rangle#\langle flow-id \rangle: \langle arg-1 \rangle: \langle arg-2 \rangle: \ldots \rangle\)

View Structure: Samples from Hyperledger Cacti

message Meta {
 enum Protocol {
 BITCOIN = 0;
 ETHEREUM = 1;
 FABRIC = 3;
 CORDA = 4;
 }
 Protocol protocol = 1;
 string timestamp = 2;
 string proof_type = 3;
 string serialization_format = 4;
}

message View {
 Meta meta = 1;
 bytes data = 2;
}

message ViewPayload {
 string request_id = 1;
 oneof state {
 View view = 2;
 string error = 3;
 }
}

message FabricView {
 Response response = 1;
 ProposalResponsePayload proposal_response_payload = 3;
 repeated Endorsement endorsements = 4;
}

message CordaView {
 message Notarization {
 string signature = 1;
 string certificate = 2;
 string id = 3;
 }
 repeated Notarization notarizations = 1;
 bytes payload = 2;
}

message InteropPayload {
 bytes payload = 1;
 string address = 2;
}
Request-Response Protocol for Data Sharing: Single Network

Contains view address
Request-Response Protocol for Data Sharing: Two Networks

Contains view address