Inter-domain Source Address Validation (SAVNET) Architecture

Jianping Wu, Dan Li, Mingqqing Huang, Li Chen, Nan Geng, Libin Liu, Lancheng Qin

July 27, 2023
Outline

- Background
 - Quick review of requirements for the new inter-domain SAV mechanism
- Inter-domain SAVNET Architecture
- Summary
Background

- Inter-domain SAVNET architecture aims to provide a high-level framework for developing new inter-domain SAV mechanisms
 - Address the problems of existing inter-domain SAV mechanisms
 - Meet the requirements proposed in [draft-ietf-savnet-inter-domain-problem-statement]

- Historical versions
 - draft-wu-savnet-inter-domain-architecture-00, IETF 115 SAVNET WG
 - draft-wu-savnet-inter-domain-architecture-01, IETF 116 SAVNET WG
 - draft-wu-savnet-inter-domain-architecture-02, June 1, 2023
 - draft-wu-savnet-inter-domain-architecture-03, IETF 117 SAVNET WG
Comments on Version-01

- Remove the details which may relate to a specific solution.
 - Response: We revise the draft to make inter-domain SAVNET architecture more general.

- K. Sriram: The terminology of Passive Acquired Information and Active Collaboration Information may not be clearly defined.
 - Response: We revise the names and descriptions of different SAV-related information.

- Actively elaborate on what diagnosis and logging you would do to allow operators to address the underlying problems.
 - Response: We revise the draft and add management considerations.
Comments on Version-01

- Rüdiger Volk: Should not only address the partially deployed situation, also should consider the convergence issue, since the internet is a consistently moving system.
 - Response: We revise the draft and add convergence considerations.

- Concern of delay or loss of active collaboration information, resulting in improper block.
 - Response: We add convergence considerations to discuss these issues.
Comments on Version-01

- Igor Lubashev: Security concern of control flow messages taking same data path as the packets.

 ◆ Response: We revise draft to consider security issues of SAV-specific protocol in the security considerations section. The detailed design of SAV-specific protocol is out of scope for this document.

- Ben Maddison: Security issues should be considered in the Architecture.

 ◆ Response: We add more security considerations in the draft.
Xueyan Song: What is the relationship and difference between the intra- and inter-domain Architecture?

◆Response: Compared to intra-domain SAVNET architecture, inter-domain SAVNET architecture uses more AS-level information (e.g., RPKI ROA and ASPA objects, AS-level forwarding paths), and has different deployment, convergence, management, and security considerations.

Zhen Tan: What is the relationship between the Architecture draft and the other draft about SAV table?

◆Response: This Architecture draft describes the high-level framework to generate SAV rules, while the other draft describes how to organize and use a SAV table.
Main Updates Compared to Version-01

- Updates in Inter-domain SAVNET Architecture section
 - Revise the SAV-related information and sources
 - Add the description of SAV-specific messages
 - Define the priorities of different SAV-related information sources
 - Add the description of management channel and information channel

- Revise the Partial/Incremental Deployment section

- Add a new Convergence Considerations section

- Add a new Management Considerations section

- Revise the Security Considerations section
Outline

- Background
- Quick review of requirements for the new inter-domain SAV mechanism
- Inter-domain SAVNET Architecture
- Summary
Quick Review of Requirements for the New Inter-domain SAV Mechanism

- Requirement #1: Improving Validation Accuracy over Existing Mechanisms
 - The new inter-domain SAV mechanism should improve the validation accuracy upon existing inter-domain SAV mechanisms

- Requirement #2: Working in Incremental/Partial Deployment
 - The new inter-domain SAV mechanism should provide effective protection for source addresses when it is partially deployed in the Internet

- Requirement #3: Reducing Operational Overhead
 - The new inter-domain SAV mechanism must be able to adapt to dynamic networks and asymmetric routing scenarios automatically

- Requirement #4: Communicating SAV-specific Information between ASes
 - A SAV-specific communication approach between ASes should be designed
Outline

- Background
- Quick review of requirements for the new inter-domain SAV mechanism
- Inter-domain SAVNET Architecture
- Summary
Basic Idea of Inter-domain SAVNET Architecture

- To meet Requirement #1, #3, and #4
 - Inter-domain SAVNET architecture allows ASes to communicate SAV-specific information through a SAV-specific protocol.
 - When SAV-specific information is available, SAV-specific information is preferentially used to generate SAV rules.
 - Because SAV-specific information can help generate more accurate SAV rules than the information (e.g., routing information) used in existing inter-domain SAV mechanisms.

- To meet Requirement #2
 - When SAV-specific information for some prefixes are not available, general information (such as routing information or RPKI ROA and ASPA objects) can be used to generate SAV rules.
SAV-related Information and Sources

- **SAV-specific information** is the information designed specifically for SAV
 - The real forwarding path information from other ASes, which consists of their legitimate source prefixes and the corresponding incoming interfaces

- **General information** refers to the information that is not designed for SAV but can also be used for SAV to some extent
 - Such as routing information in RIBs or FIBs, the relationships between prefixes and ASNs in RPKI ROA Objects, and the Customer-to-Provider relationships in RPKI ASPA Objects

SAV-specific information can help generate **more accurate SAV rules** than general information
SAV-specific Messages

- The SAV-specific Messages propagate or originate SAV-specific information between the SAV-specific Protocol Speakers in different ASes
 - The SAV-specific Protocol Speaker can obtain the forwarding path information towards each destination AS based on the local RIB information, and advertise the forwarding path information through SAV-specific Messages
 - After receiving and processing the SAV-specific Messages from other ASes, the AS can obtain the legitimate incoming interfaces for the source prefixes of the origin AS
SAV-specific Messages: An Example

- Assume AS 1 selects AS 1 → AS 2 → AS 4 as the best forwarding path to P4.
- By using the SAV-specific protocol, AS 1 advertises its forwarding path information in SAV-specific Messages.
- After receiving the SAV-specific Message originated from AS 1, AS 4 identifies the legitimate incoming interface for source prefix of AS 1.
Consolidate SAV-related information from multiple sources and generate SAV rules based on the SAV-related information.
SAV Information Base (SIB)

- SIB consolidates SAV-related information from various sources
 - Each row records the index, the prefix, the prefix’s valid AS-level incoming interface, the prefix’s incoming direction, and the corresponding SAV information source
 - Different SAV information sources may specify different incoming interfaces for the same prefix

SAV Information Base for AS 4

<table>
<thead>
<tr>
<th>Index</th>
<th>Prefix</th>
<th>AS-level Interface</th>
<th>Direction</th>
<th>SAV Information Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P3</td>
<td>Itf.1</td>
<td>Provider</td>
<td>General Information</td>
</tr>
<tr>
<td>1</td>
<td>P2</td>
<td>Itf.2</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>2</td>
<td>P1</td>
<td>Itf.2</td>
<td>Customer</td>
<td>SAV-specific Information</td>
</tr>
<tr>
<td>3</td>
<td>P1</td>
<td>Itf.3</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>4</td>
<td>P6</td>
<td>Itf.2</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>5</td>
<td>P6</td>
<td>Itf.3</td>
<td>Customer</td>
<td>SAV-specific Information, General Information</td>
</tr>
<tr>
<td>6</td>
<td>P5</td>
<td>Itf.4</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>7</td>
<td>P5</td>
<td>Itf.1</td>
<td>Provider</td>
<td>General Information</td>
</tr>
</tbody>
</table>
How to Identify the Most Accurate Incoming Interface?

- Priorities of different SAV information sources

 - Inter-domain SAVNET architecture assigns priorities to different SAV information sources and preferentially uses higher-priority information to generate SAV rules

Priority Ranking for the SAV Information Sources

<table>
<thead>
<tr>
<th>SAV Information Sources</th>
<th>Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAV-specific Information</td>
<td>1</td>
</tr>
<tr>
<td>General Information</td>
<td>2</td>
</tr>
<tr>
<td>ROA and ASPA</td>
<td>2</td>
</tr>
<tr>
<td>RIB</td>
<td>3</td>
</tr>
<tr>
<td>FIB</td>
<td>4</td>
</tr>
</tbody>
</table>

SAV Information Base for AS 4

<table>
<thead>
<tr>
<th>Index</th>
<th>Prefix</th>
<th>AS-level Interface</th>
<th>Direction</th>
<th>SAV Information Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P3</td>
<td>Itf.1</td>
<td>Provider</td>
<td>General Information</td>
</tr>
<tr>
<td>1</td>
<td>P2</td>
<td>Itf.2</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>2</td>
<td>P1</td>
<td>Itf.2</td>
<td>Customer</td>
<td>SAV-specific Information</td>
</tr>
<tr>
<td>3</td>
<td>P1</td>
<td>Itf.3</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>4</td>
<td>P6</td>
<td>Itf.2</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>5</td>
<td>P6</td>
<td>Itf.3</td>
<td>Customer</td>
<td>SAV-specific Information, General Information</td>
</tr>
<tr>
<td>6</td>
<td>P5</td>
<td>Itf.4</td>
<td>Customer</td>
<td>General Information</td>
</tr>
<tr>
<td>7</td>
<td>P5</td>
<td>Itf.1</td>
<td>Provider</td>
<td>General Information</td>
</tr>
</tbody>
</table>
Management Channel and Information Channel

- **Management Channel**
 - Deliver manual configurations of network operators
 - Such as SAV configurations using YANG, CLI, SAVNET operation and management, and inter-domain SAVNET provisioning

- **Information Channel**
 - Serve as a means to transmit SAV-related information from different sources

Diagram:
- SAVNET Agent
 - Management Channel
 - Information Channel
 - SAV-specific Protocol Speaker
 - RPKI ROA Obj. and ASPA Obj.
 - RIB
Partial/Incremental Deployment

- New inter-domain SAV mechanisms MUST support partial or incremental deployment
 - When SAV-specific information for some prefixes are unavailable, general information (e.g., routing information from RIB and FIB) should be used to generate SAV rules for these prefixes

- To reduce the deployment risks, network operators can enable the block action incrementally:
 - First, conduct measurement and analyze the accuracy of validation results
 - Then, limit the rate of packets with invalid validation results
 - Finally, block packets with invalid validation results after verifying the SAV accuracy, impact on forwarding performance, and operational overhead
Convergence Considerations

- Source Information Base Manager should collect SAV-related information from various SAV information sources and consolidate them in a timely manner:
 - For general information (e.g., routing information, ROA objects, or ASPA objects), it relies on the convergence mechanisms in routing protocols or RPKI.
 - For SAV-specific information, the SAV-specific protocol Speaker should launch SAV-specific Messages to adapt to route changes in a timely manner.

- SAV-specific protocol should be designed with consideration of factors that may affect the convergence:
 - Such as packet loss, unpredictable network latency, or message processing latency.
Management Considerations

- Interoperability
 - Devices from different vendors or different releases of the same product can be managed through a unified data model such as YANG

- Scalability
 - Scalable operation and management methods such as NETCONF and syslog protocol should be supported

- Implementation considerations
 - Management operations (including diagnosis and logging) should be designed and implemented in existing protocols or protocol extensions
The security threats faced by SAV-specific protocol in inter-domain networks can be categorized into two main aspects:

- Session security threats
 - Session identity impersonation and session integrity destruction
- Content security threats
 - Message alteration, message injection, and path deviation

Existing security mechanisms (e.g., MD5, Keychain) can be used or a new security mechanism should be designed to secure SAV-specific protocol.

The detailed security design of SAV-specific protocol is out of scope for this document.
Outline

- Background
- Quick review of requirements for the new inter-domain SAV mechanism
- Inter-domain SAVNET Architecture
- Summary
Inter-domain SAVNET architecture can well meet the requirements proposed in [draft-ietf-savnet-inter-domain-problem-statement]

- Requirement #1: Improving Validation Accuracy over Existing Mechanisms
 - SAV-specific information can generate more accurate SAV rules than general information

- Requirement #2: Working in Incremental/Partial Deployment
 - When some SAV-specific information is not available, general information can still be used

- Requirement #3: Reducing Operational Overhead
 - SAV-related information can be automatically collected through information channels

- Requirement #4: Communicating SAV-specific Information between ASes
 - SAV-specific protocol is used to communicate SAV-specific information between ASes
Next Step

- Solicit comments and refine the draft
 - Many thanks to Igor, Sriram, Rüdiger Volk, Ben Maddison, Xueyan Song, and Zhen Tan for their valuable comments
 - Your comments are welcome!
Thanks!
Backup slides
By checking the source address and the actual incoming interface of each packet against the SAV table, the validity state of each packet can be considered “valid”, “invalid”, or “unknown”

- Packets with “valid” state should be permitted
- Packets with “invalid” state should be blocked
- Packets with “unknown” state can be blocked or permitted according to the SAV configurations

More details about how to use the SAV table can be found in [draft-huang-savnet-sav-table]
Three Validity States

- "Valid" means
 - There is a source prefix in SAV table covering the source address of the packet, and the valid incoming interfaces cover the actual incoming interface of the packet.

- "Invalid" means
 - There is a source prefix in SAV table covering the source address of the packet, but the actual incoming interface of the packet does not match any valid incoming interface.

- "Unknown" means
 - There is no source prefix in SAV table covering the source address of the packet.