
Network Working Group A. Huang Feng

Internet-Draft P. Francois

Updates: RFC5277 (if approved) INSA-Lyon

Intended status: Standards Track T. Graf

Expires: 22 April 2024 Swisscom

 B. Claise

 Huawei

 20 October 2023

 YANG model for NETCONF Event Notifications

 draft-ahuang-netconf-notif-yang-03

Abstract

 This document defines the YANG model for NETCONF Event Notifications.

 The definition of this YANG model allows the encoding of NETCONF

 Event Notifications in YANG compatible encodings such as YANG-JSON

 and YANG-CBOR.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 April 2024.

Huang Feng, et al. Expires 22 April 2024 [Page 1]

Internet-Draft NETCONF Event Notification YANG October 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Differences to draft-ietf-netconf-notification-messages . . . 3

 3. YANG Module . 3

 3.1. YANG Tree Diagram . 3

 3.2. YANG Module . 3

 4. Security Considerations 5

 5. IANA Considerations . 5

 5.1. URI . 5

 5.2. YANG module name . 5

 6. Acknowledgements . 5

 7. References . 5

 7.1. Normative References 5

 7.2. Informative References 7

 Appendix A. Examples . 7

 A.1. YANG-JSON encoded message 7

 A.2. YANG-CBOR encoded message 8

 Authors’ Addresses . 8

1. Introduction

 This document defines a YANG [RFC7950] data model for NETCONF Event

 Notifications [RFC5277]. The notification structure defined in

 [RFC5277] uses a XML Schema [W3C.REC-xml-20001006] allowing to encode

 and validate the message in XML. Nevertheless, when the notification

 message is encoded using other encodings such as YANG-JSON [RFC7951]

 or YANG-CBOR [RFC9254], a YANG model to validate or encode the

 message is necessary. This document extends [RFC5277], defining the

 NETCONF Event Notification structure in a YANG module.

Huang Feng, et al. Expires 22 April 2024 [Page 2]

Internet-Draft NETCONF Event Notification YANG October 2023

2. Differences to draft-ietf-netconf-notification-messages

 [I-D.ietf-netconf-notification-messages] proposes a structure to send

 multiple notifications in a single message. Unlike

 [I-D.ietf-netconf-notification-messages], this document defines a

 YANG module to encode NETCONF Notifications with encodings other than

 XML, which is currently not existing. The structure for NETCONF

 notifications is defined in [RFC5277] using a XSD, but there is no

 YANG module defining the structure of the notification message sent

 by a server when the message is encoded in YANG-JSON [RFC7951] or

 YANG-CBOR [RFC9254].

3. YANG Module

3.1. YANG Tree Diagram

 This YANG module adds a structure with one leaf for the datetime as

 defined in section 2.2.1 of [RFC5277]. The name of the leaf matches

 the definition of the XSD element name defined in Section 4 of

 [RFC5277].

 module: ietf-notification

 structure notification:

 +-- eventTime yang:date-and-time

3.2. YANG Module

 The YANG module uses the same namespace from the XML Schema defined

 in Section 4 of [RFC5277] allowing to use this YANG module to also

 validate already implemented XML encoded NETCONF Event Notifications.

 <CODE BEGINS> file "ietf-notification@2023-07-23.yang"

 module ietf-notification {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:netconf:notification:1.0";

 prefix inotif;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-yang-structure-ext {

 prefix sx;

 reference

 "RFC 8791: YANG Data Structure Extensions";

 }

Huang Feng, et al. Expires 22 April 2024 [Page 3]

Internet-Draft NETCONF Event Notification YANG October 2023

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/group/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>

 Pierre Francois

 <mailto:pierre.francois@insa-lyon.fr>

 Thomas Graf

 <mailto:thomas.graf@swisscom.com>

 Benoit Claise

 <mailto:benoit.claise@huawei.com>";

 description

 "Defines NETCONF Event Notification structure as defined in RFC5277.

 This YANG module uses the same namespace from the XML schema defined

 in Section 4 of RFC5277 to be able to validate already implemented

 XML encoded messages.

 Copyright (c) 2023 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2023-07-23 {

 description

 "First revision";

 reference

 "RFC XXXX: NETCONF Event Notification YANG";

 }

 sx:structure notification {

 leaf eventTime {

 type yang:date-and-time;

 mandatory true;

 description

 "The date and time the event was generated by the event source.

 This parameter is of type dateTime and compliant to [RFC3339].

 Implementations must support time zones.

 The leaf name in camel case matches the name of the XSD element

Huang Feng, et al. Expires 22 April 2024 [Page 4]

Internet-Draft NETCONF Event Notification YANG October 2023

 defined in Section 4 of RFC5277.";

 }

 }

 }

 <CODE ENDS>

4. Security Considerations

 The security considerations for the NETCONF Event notifications are

 described in [RFC5277]. This documents adds no additional security

 considerations.

5. IANA Considerations

 This document describes the URI used for the IETF XML Registry and

 registers a new YANG module name.

5.1. URI

 IANA is requested to add this document as a reference in the

 following URI in the IETF XML Registry [RFC3688].

 URI: urn:ietf:params:xml:ns:netconf:notification:1.0

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 Reference: RFC5277; RFC-to-be

5.2. YANG module name

 This document registers the following YANG module in the YANG Module

 Names Registry [RFC6020], within the "YANG Parameters" registry:

 name: ietf-notification

 namespace: urn:ietf:params:xml:ns:netconf:notification:1.0

 prefix: inotif

 reference: RFC-to-be

6. Acknowledgements

 The authors would like to thank Andy Bierman, Tom Petch and Jason

 Sterne for their review and valuable comments.

7. References

7.1. Normative References

Huang Feng, et al. Expires 22 April 2024 [Page 5]

Internet-Draft NETCONF Event Notification YANG October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:

 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event

 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,

 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",

 RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",

 RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data

 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,

 June 2020, <https://www.rfc-editor.org/info/rfc8791>.

 [W3C.REC-xml-20001006]

 Bray, T., Paoli, J., Sperberg-McQueen, M., and E. Maler,

 "Extensible Markup Language (XML) 1.0 (Second Edition)",

 W3C, October 2000,

 <https://www.w3.org/TR/2000/REC-xml-20001006>.

Huang Feng, et al. Expires 22 April 2024 [Page 6]

Internet-Draft NETCONF Event Notification YANG October 2023

7.2. Informative References

 [I-D.ietf-netconf-notification-messages]

 Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.

 Clemm, "Notification Message Headers and Bundles", Work in

 Progress, Internet-Draft, draft-ietf-netconf-notification-

 messages-08, 17 November 2019,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-

 notification-messages-08>.

 [RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,

 C., and M. Richardson, "Encoding of Data Modeled with YANG

 in the Concise Binary Object Representation (CBOR)",

 RFC 9254, DOI 10.17487/RFC9254, July 2022,

 <https://www.rfc-editor.org/info/rfc9254>.

Appendix A. Examples

 This non-normative section shows an example of how a YANG-JSON and

 YANG-CBOR are encoded.

A.1. YANG-JSON encoded message

 This is an example of a YANG-JSON encoded notification.

 {

 "ietf-notification:notification": {

 "eventTime": "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

 }

 Figure 1: JSON-encoded notification

Huang Feng, et al. Expires 22 April 2024 [Page 7]

Internet-Draft NETCONF Event Notification YANG October 2023

A.2. YANG-CBOR encoded message

 This is an example of YANG-CBOR encoded notification. The figure

 Figure 2 shows the message using the CBOR diagnostic notation as

 defined in section 3.1 of [RFC9254].

 {

 "ietf-notification:notification": {

 "eventTime": "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

 }

 Figure 2: CBOR-encoded notification using diagnostic notation

Authors’ Addresses

 Alex Huang Feng

 INSA-Lyon

 Lyon

 France

 Email: alex.huang-feng@insa-lyon.fr

 Pierre Francois

 INSA-Lyon

 Lyon

 France

 Email: pierre.francois@insa-lyon.fr

 Thomas Graf

 Swisscom

 Binzring 17

 CH-8045 Zurich

 Switzerland

Huang Feng, et al. Expires 22 April 2024 [Page 8]

Internet-Draft NETCONF Event Notification YANG October 2023

 Email: thomas.graf@swisscom.com

 Benoit Claise

 Huawei

 Email: benoit.claise@huawei.com

Huang Feng, et al. Expires 22 April 2024 [Page 9]

Network Working Group A. Huang Feng
Internet-Draft P. Francois
Intended status: Standards Track INSA-Lyon
Expires: 25 April 2024 K. Watsen
 Watsen Networks
 23 October 2023

 YANG Grouping for UDP Clients and UDP Servers
 draft-ahuang-netconf-udp-client-server-00

Abstract

 This document defines two YANG 1.1 modules to support the
 configuration of UDP clients and UDP servers. The modules include
 basic parameters for configuring UDP based clients and servers and a
 DTLS container when encryption needs to be enabled.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Huang Feng, et al. Expires 25 April 2024 [Page 1]

Internet-Draft udp-client-server-grouping October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. The "ietf-udp-client" Module 2
 2.1. The "udp-client-grouping" Grouping 2
 2.2. The "udp-dtls-client-grouping" Grouping 3
 2.3. YANG Module . 4
 3. The "ietf-udp-server" Module 7
 3.1. The "udp-server-grouping" Grouping 7
 3.2. The "udp-dtls-server-grouping" Grouping 7
 3.3. YANG Module . 9
 4. Security Considerations 11
 5. IANA Considerations . 11
 5.1. URI . 11
 5.2. YANG module name . 11
 6. Acknowledgements . 12
 7. References . 12
 7.1. Normative References 12
 7.2. Informative References 13
 Authors’ Addresses . 13

1. Introduction

 This documents defines two YANG 1.1 [RFC7950] modules to support the
 configuration of UDP clients and UDP servers, either as standalone or
 in conjunction with configuration of other protocol layers.

2. The "ietf-udp-client" Module

 The "ietf-udp-client" YANG module defines two groupings for
 configuring UDP clients: the "udp-client-grouping" for UDP clients
 and the "udp-dtls-client-grouping" for UDP clients with DTLS 1.3
 [RFC9147] enryption.

2.1. The "udp-client-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the "udp-client-
 grouping" grouping:

Huang Feng, et al. Expires 25 April 2024 [Page 2]

Internet-Draft udp-client-server-grouping October 2023

 module: ietf-udp-client

 grouping udp-client-grouping:
 +-- remote-address inet:ip-address-no-zone
 +-- remote-port inet:port-number

2.2. The "udp-dtls-client-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the "udp-dtls-
 client-grouping" grouping:

module: ietf-udp-client

 grouping udp-dtls-client-grouping:
 +-- remote-address inet:ip-address-no-zone
 +-- remote-port inet:port-number
 +-- dtls! {dtls13}?
 +-- client-identity!
 | +-- (auth-type)
 | +--:(certificate) {client-ident-x509-cert}?
 | | +-- certificate
 | | +-- (local-or-keystore)
 | | ...
 | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +-- (local-or-keystore)
 | | ...
 | +--:(tls12-psk)
 | | {client-ident-tls12-psk,not tlsc:client-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +-- (local-or-keystore)
 | | | ...
 | | +-- id? string
 | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +-- (local-or-keystore)
 | | ...
 | +-- external-identity string
 | +-- hash
 | | tlscmn:epsk-supported-hash
 | +-- context? string
 | +-- target-protocol? uint16
 | +-- target-kdf? uint16
 +-- server-authentication
 | +-- ca-certs! {server-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition

Huang Feng, et al. Expires 25 April 2024 [Page 3]

Internet-Draft udp-client-server-grouping October 2023

 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | +-- truststore-reference? ts:certificate-bag-ref
 | +-- ee-certs! {server-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | +-- truststore-reference? ts:certificate-bag-ref
 | +-- raw-public-keys! {server-auth-raw-public-key}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,public-keys}?
 | | +-- truststore-reference? ts:public-key-bag-ref
 | +-- tls12-psks? empty
 | | {server-auth-tls12-psk,not tlsc:server-auth-tls12-psk}?
 | +-- tls13-epsks? empty {server-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +-- tls-versions
 | | +-- tls-version* identityref
 | +-- cipher-suites
 | +-- cipher-suite* identityref
 +-- keepalives {tls-client-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

2.3. YANG Module

 The "ietf-udp-client" YANG module uses the groupings defined in
 [I-D.ietf-netconf-tls-client-server] for configuring the DTLS 1.3
 encryption.

 <CODE BEGINS> file "ietf-udp-client@2023-10-16.yang"
 module ietf-udp-client {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-udp-client";
 prefix udpc;
 import ietf-inet-types {
 prefix inet;

Huang Feng, et al. Expires 25 April 2024 [Page 4]

Internet-Draft udp-client-server-grouping October 2023

 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-tls-client {
 prefix tlsc;
 reference
 "RFC TTTT: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng
 <mailto:alex.huang-feng@insa-lyon.fr>
 Pierre Francois
 <mailto:pierre.francois@insa-lyon.fr>";

 description
 "Defines a generic grouping for UDP-based client applications.
 Supports groupings for UDP clients and UDP clients with DTLS encryption.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Revised BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC
 itself for full legal notices.";

 revision 2023-10-16 {
 description
 "Initial revision";
 reference
 "RFC-to-be: YANG Grouping for UDP Clients and UDP Servers";
 }

 /*
 * FEATURES
 */
 feature dtls13 {
 description
 "This feature indicates that DTLS 1.3 encryption of UDP

Huang Feng, et al. Expires 25 April 2024 [Page 5]

Internet-Draft udp-client-server-grouping October 2023

 packets is supported.";
 }

 grouping udp-client-grouping {
 description
 "Provides a reusable grouping for configuring a UDP client.";

 leaf remote-address {
 type inet:ip-address-no-zone;
 mandatory true;
 description
 "IP address of the UDP client, which can be an
 IPv4 address or an IPV6 address.";
 }

 leaf remote-port {
 type inet:port-number;
 mandatory true;
 description
 "Port number of the UDP client.";
 }
 }

 grouping udp-dtls-client-grouping {
 description
 "Provides a reusable grouping for configuring a UDP client with
 DTLS encryption.";

 uses udp-client-grouping;
 container dtls {
 if-feature dtls13;
 presence dtls;
 uses tlsc:tls-client-grouping {
 // Using tls-client-grouping without TLS1.2 parameters
 // allowing only DTLS 1.3
 refine "client-identity/auth-type/tls12-psk" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:client-ident-tls12-psk";
 }
 refine "server-authentication/tls12-psks" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:server-auth-tls12-psk";
 }
 }
 description
 "Container for configuring DTLS 1.3 parameters.";
 }
 }

Huang Feng, et al. Expires 25 April 2024 [Page 6]

Internet-Draft udp-client-server-grouping October 2023

 }
 <CODE ENDS>

3. The "ietf-udp-server" Module

 The "ietf-udp-server" YANG module defines two groupings for
 configuring UDP servers: the "udp-server-grouping" for UDP servers
 and the "udp-dtls-server-grouping" for UDP servers with DTLS 1.3
 [RFC9147] enryption.

3.1. The "udp-server-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the "udp-server-
 grouping" grouping:

 module: ietf-udp-server

 grouping udp-server-grouping:
 +-- local-address inet:ip-address-no-zone
 +-- local-port inet:port-number

3.2. The "udp-dtls-server-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the "udp-dtls-
 server-grouping" grouping:

module: ietf-udp-server

 grouping udp-dtls-server-grouping:
 +-- local-address inet:ip-address-no-zone
 +-- local-port inet:port-number
 +-- dtls! {dtls13}?
 +-- server-identity
 | +-- (auth-type)
 | +--:(certificate) {server-ident-x509-cert}?
 | | +-- certificate
 | | +-- (local-or-keystore)
 | | ...
 | +--:(raw-private-key) {server-ident-raw-public-key}?
 | | +-- raw-private-key
 | | +-- (local-or-keystore)
 | | ...
 | +--:(tls12-psk)
 | | {server-ident-tls12-psk,not tlss:server-ident-tls12-psk}?
 | | +-- tls12-psk
 | | +-- (local-or-keystore)
 | | | ...
 | | +-- id_hint? string

Huang Feng, et al. Expires 25 April 2024 [Page 7]

Internet-Draft udp-client-server-grouping October 2023

 | +--:(tls13-epsk) {server-ident-tls13-epsk}?
 | +-- tls13-epsk
 | +-- (local-or-keystore)
 | | ...
 | +-- external-identity string
 | +-- hash
 | | tlscmn:epsk-supported-hash
 | +-- context? string
 | +-- target-protocol? uint16
 | +-- target-kdf? uint16
 +-- client-authentication! {client-auth-supported}?
 | +-- ca-certs! {client-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | +-- truststore-reference? ts:certificate-bag-ref
 | +-- ee-certs! {client-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | +-- truststore-reference? ts:certificate-bag-ref
 | +-- raw-public-keys! {client-auth-raw-public-key}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | +-- local-definition
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,public-keys}?
 | | +-- truststore-reference? ts:public-key-bag-ref
 | +-- tls12-psks? empty
 | | {client-auth-tls12-psk,not tlss:client-auth-tls12-psk}?
 | +-- tls13-epsks? empty {client-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +-- tls-versions
 | | +-- tls-version* identityref
 | +-- cipher-suites
 | +-- cipher-suite* identityref
 +-- keepalives {tls-server-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

Huang Feng, et al. Expires 25 April 2024 [Page 8]

Internet-Draft udp-client-server-grouping October 2023

3.3. YANG Module

 The "ietf-udp-server" YANG module uses the groupings defined in
 [I-D.ietf-netconf-tls-client-server] for configuring the DTLS 1.3
 encryption.

 <CODE BEGINS> file "ietf-udp-server@2023-10-16.yang"
 module ietf-udp-server {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-udp-server";
 prefix udps;
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-tls-server {
 prefix tlss;
 reference
 "RFC FFFF: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng
 <mailto:alex.huang-feng@insa-lyon.fr>
 Pierre Francois
 <mailto:pierre.francois@insa-lyon.fr>";

 description
 "Defines a generic grouping for UDP-based server applications.
 Supports groupings for UDP servers and UDP servers with DTLS encryption.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Revised BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC
 itself for full legal notices.";

Huang Feng, et al. Expires 25 April 2024 [Page 9]

Internet-Draft udp-client-server-grouping October 2023

 revision 2023-10-16 {
 description
 "Initial revision";
 reference
 "RFC-to-be: YANG Grouping for UDP Clients and UDP Servers";
 }

 /*
 * FEATURES
 */
 feature dtls13 {
 description
 "This feature indicates that DTLS 1.3 encryption of UDP
 packets is supported.";
 }

 grouping udp-server-grouping {
 description
 "Provides a reusable grouping for configuring a UDP servers.";

 leaf local-address {
 type inet:ip-address-no-zone;
 mandatory true;
 description
 "IP address of the UDP server, which can be an
 IPv4 address or an IPV6 address.";
 }

 leaf local-port {
 type inet:port-number;
 mandatory true;
 description
 "Port number of the UDP server.";
 }
 }

 grouping udp-dtls-server-grouping {
 description
 "Provides a reusable grouping for configuring a UDP server with
 DTLS encryption.";

 uses udp-server-grouping;
 container dtls {
 if-feature dtls13;
 presence dtls;
 uses tlss:tls-server-grouping {
 // Using tls-server-grouping without TLS1.2 parameters
 // allowing only DTLS 1.3

Huang Feng, et al. Expires 25 April 2024 [Page 10]

Internet-Draft udp-client-server-grouping October 2023

 refine "server-identity/auth-type/tls12-psk" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlss:server-ident-tls12-psk";
 }
 refine "client-authentication/tls12-psks" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlss:client-auth-tls12-psk";
 }
 }
 description
 "Container for configuring DTLS 1.3 parameters.";
 }
 }
 }
 <CODE ENDS>

4. Security Considerations

 TODO:

5. IANA Considerations

 This document describes the URIs from IETF XML Registry and the
 registration of a two new YANG module names

5.1. URI

 IANA is requested to assign two new URI from the IETF XML Registry
 [RFC3688]. The following two URIs are suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-client
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-server
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

5.2. YANG module name

 This document also requests two new YANG module names in the YANG
 Module Names registry [RFC8342] with the following suggestions:

 name: ietf-udp-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-client
 prefix: udpc
 reference: RFC-to-be

Huang Feng, et al. Expires 25 April 2024 [Page 11]

Internet-Draft udp-client-server-grouping October 2023

 name: ietf-udp-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-server
 prefix: udps
 reference: RFC-to-be

6. Acknowledgements

 The authors would like to thank xxx for their review and valuable
 comments.

7. References

7.1. Normative References

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K., "YANG Groupings for TLS Clients and TLS
 Servers", Work in Progress, Internet-Draft, draft-ietf-
 netconf-tls-client-server-33, 17 April 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 tls-client-server-33>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Huang Feng, et al. Expires 25 April 2024 [Page 12]

Internet-Draft udp-client-server-grouping October 2023

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

7.2. Informative References

Authors’ Addresses

 Alex Huang Feng
 INSA-Lyon
 Lyon
 France
 Email: alex.huang-feng@insa-lyon.fr

 Pierre Francois
 INSA-Lyon
 Lyon
 France
 Email: pierre.francois@insa-lyon.fr

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

Huang Feng, et al. Expires 25 April 2024 [Page 13]

NETCONF T. Zhou
Internet-Draft G. Zheng
Intended status: Standards Track Huawei
Expires: 9 April 2024 E. Voit
 Cisco Systems
 T. Graf
 Swisscom
 P. Francois
 INSA-Lyon
 7 October 2023

 Subscription to Distributed Notifications
 draft-ietf-netconf-distributed-notif-08

Abstract

 This document describes extensions to the YANG notifications
 subscription to allow metrics being published directly from
 processors on line cards to target receivers, while subscription is
 still maintained at the route processor in a distributed forwarding
 system.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 April 2024.

Zhou, et al. Expires 9 April 2024 [Page 1]

Internet-Draft Distributed Notifications October 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminologies . 3
 3. Motivation . 4
 4. Solution Overview . 4
 5. Subscription Decomposition 6
 6. Publication Composition 6
 7. Subscription State Change Notifications 7
 8. Publisher Configurations 7
 9. YANG Tree . 7
 10. YANG Module . 8
 11. IANA Considerations . 10
 12. Implementation Status . 10
 12.1. Open Source Publisher 10
 12.2. Open Source Receiver Library 11
 12.3. Pmacct Data Collection 11
 12.4. Huawei VRP . 11
 13. Security Considerations 11
 14. Contributors . 12
 15. Acknowledgements . 12
 16. References . 12
 16.1. Normative References 12
 16.2. Informative References 13
 Appendix A. Examples . 14
 A.1. Dynamic Subscription 14
 A.2. Configured Subscription 18
 Authors’ Addresses . 20

Zhou, et al. Expires 9 April 2024 [Page 2]

Internet-Draft Distributed Notifications October 2023

1. Introduction

 The mechanism to support a subscription of a continuous and
 customized stream of updates from a YANG datastore [RFC8342] is
 defined in [RFC8639] and [RFC8641]. Requirements for Subscription to
 YANG Datastores are defined in [RFC7923].

 By streaming data from publishers to receivers, much better
 performance and fine-grained sampling can be achieved than with
 polling. In a distributed forwarding system, the packet forwarding
 is delegated to multiple processors on line cards. To not to
 overwhelm the route processor resources, it is not uncommon that data
 records are published directly from processors on line cards to
 target Receivers to further increase efficiency on the routing
 system.

 This document complements the general subscription requirements
 defined in section 4.2.1 of [RFC7923] by the paragraph: A
 Subscription Service MAY support the ability to export from multiple
 software processes on a single routing system and expose the
 information which software process produced which message to maintain
 data integrity.

2. Terminologies

 The following terms are defined in [RFC8639] and are not redefined
 here:

 Subscriber

 Publisher

 Receiver

 Subscription

 In addition, this document defines the following terms:

 Global Subscription: is the Subscription requested by the subscriber.
 It may be decomposed into multiple Component Subscriptions.

 Component Subscription: is the Subscription that defines a data
 source which is managed and controlled by a single Publisher.

 Global Capability: is the overall subscription capability that the
 group of Publishers can expose to the Subscriber.

Zhou, et al. Expires 9 April 2024 [Page 3]

Internet-Draft Distributed Notifications October 2023

 Component Capability: is the subscription capability that each
 Publisher can expose to the Subscriber.

 Master: is the Publisher that interacts with the Subscriber to deal
 with the Global Subscription. It decomposes the Global Subscription
 to multiple Component Subscriptions and interacts with the Agents.

 Agent: is the Publisher that interacts with the Master to deal with
 the Component Subscription and pushing the data to the Receiver.

 Node: is the Publisher that obtains and pushes the data to the
 Receiver.

 Message Publisher: is the Publisher that pushes the message to the
 Receiver.

 Message Publisher ID: A 32-bit identifier of the publishing process
 that is locally unique to the publisher node. With this identifier
 the publishing process from where the message was published from can
 be uniquely identified. Receivers SHOULD use the transport session
 and the Publisher ID field to separate different publisher streams
 originating from the same network node.

3. Motivation

 Lost and corrupt YANG notification messages need to be recognized at
 the receiver to ensure data integrity even when multiple publisher
 processes publishing from the same transport session.

 To preserve data integrity down to the publisher process, the Message
 Publisher ID in the transport message header of the YANG notification
 message is introduced. In case of UDP transport, this is described
 in Section 3.2 of UDP-based transport [I-D.ietf-netconf-udp-notif].

4. Solution Overview

 Figure 1 below shows the distributed data export framework.

 A collector usually includes two components,

 * the Subscriber generates the subscription instructions to express
 what and how the Receiver wants to receive the data;

 * the Receiver is the target for the data publication.

 For one subscription, there can be one or more Receivers. And the
 Subscriber does not necessarily share the same IP address as the
 Receivers.

Zhou, et al. Expires 9 April 2024 [Page 4]

Internet-Draft Distributed Notifications October 2023

 In this framework, the Publisher pushes data to the Receiver
 according to the subscription. The Publisher is either in the Master
 or Agent role. The Master knows all the capabilities that his Agents
 can provide and exposes the Global Capability to the collector. The
 Subscriber maintains the Global Subscription at the Master and
 disassembles the Global Subscription to multiple Component
 Subscriptions, depending which source data is needed. The Component
 Subscriptions are then distributed to the corresponding Publisher
 Agents on route and processors on line cards.

 Publisher Agents collects metrics according to the Component
 Subscription, add its metadata, encapsulates, and pushes data to the
 Receiver where packets are reassembled and decapsulated.

 +---+
 | Collector |-------------+ | | | |
 | +------------+ | |
 | +------------+ || Receiver | | |
 | | Subscriber | |--------------+ |
 | +-----^-+----+ +------------^ |
 | | | | |
 +---+
 Global | | Global |
 Capability| | Subscription |
 +---+
 | | | | |
 | +--------+-v-------------------+ | |
 | | Publisher(Master) | | |
 | +--------^-+-------------------+ | |
 | | | | |
 | | | | |
 | Component | | Component Push | |
 | Capability| | Subscription | |
 | +--------+-v-------------------+ | |
 | | Publisher(Agent) +--+ |
 | +------------------------------+ |
 | |
 | Network Node |
 +---+

 Figure 1: The Distributed Data Export Framework

 Master and Agents interact with each other in several ways:

 * Agents need to register at the Master at the beginning of their
 process life cycle.

Zhou, et al. Expires 9 April 2024 [Page 5]

Internet-Draft Distributed Notifications October 2023

 * Contracts are created between the Master and each Agent on the
 Component Capability, and the format for streaming data structure.

 * The Master relays the component subscriptions to the Agents.

 * The Agents announce the status of their Component Subscriptions to
 the Master. The status of the overall subscription is maintained
 by the Master. The Master is responsible for notifying the
 subscriber in case of problems with the Component Subscriptions.

 The technical mechanisms or protocols used for the coordination of
 operational information between Master and Agent is out-of-scope of
 this document.

5. Subscription Decomposition

 The Collector can only subscribe to the Master. This requires the
 Master to:

 1. expose the Global Capability that can be served by multiple
 Publisher Agents;

 2. disassemble the Global Subscription to multiple Component
 Subscriptions, and distribute them to the Publisher Agents of the
 corresponding metric sources so that they not overlap;

 3. notify on changes when portions of a subscription moving between
 different Publisher Agents over time.

 And the Agent to:

 * Inherit the Global Subscription properties from Publisher Master
 for its Component Subscription;

 * share the same life-cycle as the Global Subscription;

 * share the same Subscription ID as the Global Subscription.

6. Publication Composition

 The Publisher Agent collects data and encapsulates the packets per
 Component Subscription. The format and structure of the data records
 are defined by the YANG schema, so that the decomposition at the
 Receiver can benefit from the structured and hierarchical data
 records.

Zhou, et al. Expires 9 April 2024 [Page 6]

Internet-Draft Distributed Notifications October 2023

 The Receiver is able to associate the YANG data records with
 Subscription ID [RFC8639] to the subscribed subscription and with
 Message Publisher ID to one of the publisher processes to enable
 message integrity.

 For the dynamic subscription, the output of the "establish-
 subscription" RPC defined in [RFC8639] MUST include a list of Message
 Publisher IDs to indicate how the Global Subscription is decomposed
 into several Component Subscriptions.

 The "subscription-started" and "subscription-modified" notification
 defined in [RFC8639] MUST also include a list of Message Publisher
 IDs to notify the current Publishers for the corresponding Global
 Subscription.

7. Subscription State Change Notifications

 In addition to sending event records to Receivers, the Master MUST
 also send subscription state change notifications [RFC8639] when
 events related to subscription management have occurred. All the
 subscription state change notifications MUST be delivered by the
 Master.

 When the subscription decomposition result changed, the
 "subscription-modified" notification MUST be sent to indicate the new
 list of Publishers.

8. Publisher Configurations

 This document assumes that all Publisher Agents are preconfigured to
 push data. The actual working Publisher Agents are selected based on
 the subscription decomposition result.

 All Publisher Agents share the same source IP address for data
 export. For connectionless data transport such as UDP based
 transport [I-D.ietf-netconf-udp-notif] the same Layer 4 source port
 for data export can be used. For connection based data transport
 such as HTTPS based transport [I-D.ietf-netconf-https-notif], each
 Publisher Agent MUST be able to acknowledge packet retrieval from
 Receivers, and therefore requires a dedicated Layer 4 source port per
 software process.

 The specific configuration on transports is described in the
 responsible documents.

9. YANG Tree

Zhou, et al. Expires 9 April 2024 [Page 7]

Internet-Draft Distributed Notifications October 2023

 module: ietf-distributed-notif

 augment /sn:subscriptions/sn:subscription:
 +--ro message-publisher-id* uint32
 augment /sn:subscription-started:
 +--ro message-publisher-id* uint32
 augment /sn:subscription-modified:
 +--ro message-publisher-id* uint32
 augment /sn:establish-subscription/sn:output:
 +--ro message-publisher-id* uint32

10. YANG Module

 <CODE BEGINS> file "ietf-distributed-notif@2023-09-17.yang"
 module ietf-distributed-notif {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-distributed-notif";
 prefix dn;
 import ietf-subscribed-notifications {
 prefix sn;
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Tianran Zhou
 <mailto:zhoutianran@huawei.com>

 Editor: Guangying Zheng
 <mailto:zhengguangying@huawei.com>";

 description
 "Defines augmentation for ietf-subscribed-notifications to
 enable the distributed publication with single subscription.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents

Zhou, et al. Expires 9 April 2024 [Page 8]

Internet-Draft Distributed Notifications October 2023

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices.";

 revision 2023-09-17 {
 description
 "Initial version";
 reference
 "RFC XXXX: Subscription to Distributed Notifications";
 }

 grouping message-publisher-ids {
 description
 "Provides a reusable list of message-publisher-ids.";

 leaf-list message-publisher-id {
 type uint32;
 config false;
 ordered-by user;
 description
 "Software process which created the message (e.g.,
 processor 1 on line card 1). This field is
 used to notify the collector the working originator.";
 }
 }

 augment "/sn:subscriptions/sn:subscription" {
 description
 "This augmentation allows the Message
 Publisher ID to be exposed for a subscription.";

 uses message-publisher-ids;
 }

 augment "/sn:subscription-started" {
 description
 "This augmentation allows MSO specific parameters to be
 exposed for a subscription.";

 uses message-publisher-ids;
 }

 augment "/sn:subscription-modified" {
 description
 "This augmentation allows MSO specific parameters to be
 exposed for a subscription.";

Zhou, et al. Expires 9 April 2024 [Page 9]

Internet-Draft Distributed Notifications October 2023

 uses message-publisher-ids;
 }

 augment "/sn:establish-subscription/sn:output" {
 description
 "This augmentation allows MSO specific parameters to be
 exposed for a subscription.";

 uses message-publisher-ids;
 }
 }
 <CODE ENDS>

11. IANA Considerations

 This document registers the following namespace URI in the IETF XML
 Registry [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-distributed-notif

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the YANG Module
 Names registry [RFC3688]:

 Name: ietf-distributed-notif

 Namespace: urn:ietf:params:xml:ns:yang:ietf-distributed-notif

 Prefix: dn

 Reference: RFC XXXX

12. Implementation Status

 Note to the RFC-Editor: Please remove this section before publishing.

12.1. Open Source Publisher

 INSA Lyon implemented this document for a YANG Push publisher on
 UDP-based Transport for Configured Subscriptions
 [I-D.ietf-netconf-udp-notif] in an example implementation.

 The open source code can be obtained here: [INSA-Lyon-Publisher].

Zhou, et al. Expires 9 April 2024 [Page 10]

Internet-Draft Distributed Notifications October 2023

12.2. Open Source Receiver Library

 INSA Lyon implemented this document for a YANG Push receiver on
 UDP-based Transport for Configured Subscriptions
 [I-D.ietf-netconf-udp-notif] as a library.

 The open source code can be obtained here: [INSA-Lyon-Receiver].

12.3. Pmacct Data Collection

 The open source YANG push receiver library has been integrated into
 the Pmacct open source Network Telemetry data collection.

12.4. Huawei VRP

 Huawei implemented this document for a YANG Push publisher on
 UDP-based Transport for Configured Subscriptions
 [I-D.ietf-netconf-udp-notif] in their VRP platform.

13. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The NETCONF Access Control Model (NACM) [RFC6536] provides the means
 to restrict access particulary for NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 The new data nodes introduced in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get-config or
 notification) to this data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 * /subscriptions/subscription/message-publisher-ids

 The entries in the two lists above will show where subscribed
 resources might be located on the publishers. Access control MUST be
 set so that only someone with proper access permissions has the
 ability to access this resource.

Zhou, et al. Expires 9 April 2024 [Page 11]

Internet-Draft Distributed Notifications October 2023

 Other Security Considerations is the same as those discussed in
 [RFC8639].

14. Contributors

 Alexander Clemm
 Futurewai
 2330 Central Expressway
 Santa Clara
 California
 United States of America
 Email: ludwig@clemm.org

15. Acknowledgements

 We thank Kent Watsen, Mahesh Jethanandani, Martin Bjorklund, Tim
 Carey, Qin Wu, Robert Wilton, Benoit Claise and Alex Huang Feng for
 their constructive suggestions for improving this document.

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

Zhou, et al. Expires 9 April 2024 [Page 12]

Internet-Draft Distributed Notifications October 2023

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

16.2. Informative References

 [I-D.ietf-netconf-https-notif]
 Jethanandani, M. and K. Watsen, "An HTTPS-based Transport
 for YANG Notifications", Work in Progress, Internet-Draft,
 draft-ietf-netconf-https-notif-13, 4 November 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 https-notif-13>.

 [I-D.ietf-netconf-udp-notif]
 Zheng, G., Zhou, T., Graf, T., Francois, P., Feng, A. H.,
 and P. Lucente, "UDP-based Transport for Configured
 Subscriptions", Work in Progress, Internet-Draft, draft-
 ietf-netconf-udp-notif-10, 7 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 udp-notif-10>.

Zhou, et al. Expires 9 April 2024 [Page 13]

Internet-Draft Distributed Notifications October 2023

 [INSA-Lyon-Publisher]
 "INSA Lyon, YANG Push publisher example implementation",
 <https://github.com/network-analytics/udp-notif-scapy>.

 [INSA-Lyon-Receiver]
 "INSA Lyon, YANG Push receiver library implementation",
 <https://github.com/network-analytics/udp-notif-
 c-collector>.

 [Paolo-Lucente-Pmacct]
 "Paolo Lucente, Pmacct open source Network Telemetry Data
 Collection", <https://github.com/pmacct/pmacct>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

Appendix A. Examples

 This appendix is non-normative.

A.1. Dynamic Subscription

 Figure 2 shows a typical dynamic subscription to the network node
 with distributed data export capability.

Zhou, et al. Expires 9 April 2024 [Page 14]

Internet-Draft Distributed Notifications October 2023

 +-------------+ +-------------+ +-------------+
 | Subscriber/ | | Publisher | | Publisher |
 | Receiver | | (Master) | | (Agent) |
 +-------------+ +------+------+ +------+------+
 | | |
 | establish-subscription | |
 +------------------------------>+ component |
 | | subscription |
 | RPC Reply: OK, id #22 +-------------->+
 | Message Publisher ID [#1,#2] | |
 +<------------------------------+ |
 | | |
 | notif-mesg, id #22 | |
 | Message Publisher ID #1 | |
 +<------------------------------+ |
 | | |
 | notif-mesg, id#22 | |
 | Message Publisher ID #2 | |
 +<--+
 | | |
 | modify-subscription (id#22) | |
 +------------------------------>+ component |
 | | subscription |
 | RPC Reply: OK, id #22 +-------------->+
 +<------------------------------+ |
 | | |
 | subscription-modified, id#22 | |
 | Message Publisher ID [#1] | |
 +<------------------------------+ |
 | | |
 | notif-mesg, id #22 | |
 | Message Publisher ID #1 | |
 +<------------------------------+ |
 | | |
 | | |
 + + +

 Figure 2: Call Flow for Dynamic Subscription

 A "establish-subscription" RPC request as per [RFC8641] is sent to
 the Master with a successful response. An example of using NETCONF:

Zhou, et al. Expires 9 April 2024 [Page 15]

Internet-Draft Distributed Notifications October 2023

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /ex:foo
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish-subscription>
 </netconf:rpc>

 Figure 3: "establish-subscription" Request

 As the network node is able to fully satisfy the request, the request
 is given a subscription ID of 22. The response as in Figure 4
 indicates that the subscription is decomposed into two component
 subscriptions which will be published by two message Message
 Publisher ID: #1 and #2.

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 22
 </id>
 <message-publisher-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications>
 1
 </message-publisher-id>
 <message-publisher-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications>
 2
 </message-publisher-id>
 </rpc-reply>

 Figure 4: "establish-subscription" Positive RPC Response

 Then, both Publishers send notifications with the corresponding piece
 of data to the Receiver.

Zhou, et al. Expires 9 April 2024 [Page 16]

Internet-Draft Distributed Notifications October 2023

 The subscriber may invoke the "modify-subscription" RPC for a
 subscription it previously established. The RPC has no difference to
 the single publisher case as in [RFC8641]. Figure 5 provides an
 example where a subscriber attempts to modify the period and
 datastore XPath filter of a subscription using NETCONF.

 <rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>22</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /ex:bar
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>250</yp:period>
 </yp:periodic>
 </modify-subscription>
 </rpc>

 Figure 5: "modify-subscription" Request

 If the modification is successfully accepted, the "subscription-
 modified" subscription state notification is sent to the subscriber
 by the Master. The notification, Figure 6 for example, indicates the
 modified subscription is decomposed into one component subscription
 which will be published by message Message Publisher ID #1.

Zhou, et al. Expires 9 April 2024 [Page 17]

Internet-Draft Distributed Notifications October 2023

 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-modified
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>22</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /ex:bar
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>250</yp:period>
 </yp:periodic>
 <message-publisher-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notificationss>
 1
 </message-publisher-id>
 </subscription-modified>
 </notification>

 Figure 6: "subscription-modified" Subscription State Notification

A.2. Configured Subscription

 Figure 7 shows a typical configured subscription to the network node
 with distributed data export capability.

Zhou, et al. Expires 9 April 2024 [Page 18]

Internet-Draft Distributed Notifications October 2023

 +-------------+ +-------------+ +-------------+
 | Receiver | | Publisher | | Publisher |
 | | | (Master) | | (Agent) |
 +------+------+ +------+------+ +------+------+
 | | |
 | subscription-started, id#39 | |
 | Message Publisher ID [#1,#2] | |
 +<------------------------------+ |
 | | |
 | notif-mesg, id#39 | |
 | Message Publisher ID #1 | |
 +<------------------------------+ |
 | | |
 | notif-mesg, id#39 | |
 | Message Publisher ID #2 | |
 +<--+
 | | |
 | | |
 | | |

 Figure 7: Call Flow for Configured Subscription

 Before starting to push data, the "subscription-started" subscription
 state notification is sent to the Receiver. The following example
 assumes the NETCONF transport has already established. The
 notification indicates that the configured subscription is decomposed
 into two component subscriptions which will be published by two
 message Message Publisher IDs: #1 and #2.

Zhou, et al. Expires 9 April 2024 [Page 19]

Internet-Draft Distributed Notifications October 2023

 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-started
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <identifier>39</identifier>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /ex:foo
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>250</yp:period>
 </yp:periodic>
 <message-publisher-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications>
 1
 </message-publisher-id>
 <message-publisher-id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications>
 2
 </message-publisher-id>
 </subscription-started>
 </notification>

 Figure 8: "subscription-started" Subscription State Notification

 Then, both Publishers send notifications with the corresponding data
 record to the Receiver.

Authors’ Addresses

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China
 Email: zhoutianran@huawei.com

Zhou, et al. Expires 9 April 2024 [Page 20]

Internet-Draft Distributed Notifications October 2023

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing
 Jiangsu,
 China
 Email: zhengguangying@huawei.com

 Eric Voit
 Cisco Systems
 United States of America
 Email: evoit@cisco.com

 Thomas Graf
 Swisscom
 Binzring 17
 CH- Zuerich 8045
 Switzerland
 Email: thomas.graf@swisscom.com

 Pierre Francois
 INSA-Lyon
 Lyon
 France
 Email: pierre.francois@insa-lyon.fr

Zhou, et al. Expires 9 April 2024 [Page 21]

NETCONF Working Group K. Watsen
Internet-Draft Watsen Networks
Intended status: Standards Track Q. Wu
Expires: 12 September 2023 Huawei Technologies
 O. Hagsand
 Netgate
 H. Li
 Hewlett Packard Enterprise
 P. Andersson
 Cisco Systems
 11 March 2023

 List Pagination for YANG-driven Protocols
 draft-ietf-netconf-list-pagination-01

Abstract

 In some circumstances, instances of YANG modeled "list" and "leaf-
 list" nodes may contain numerous entries. Retrieval of all the
 entries can lead to inefficiencies in the server, the client, and the
 network in between.

 This document defines a model for list pagination that can be
 implemented by YANG-driven management protocols such as NETCONF and
 RESTCONF. The model supports paging over optionally filtered and/or
 sorted entries. The solution additionally enables servers to
 constrain query expressions on some "config false" lists or leaf-
 lists.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 September 2023.

Watsen, et al. Expires 12 September 2023 [Page 1]

Internet-Draft List Pagination March 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Conventions . 4
 1.3. Adherence to the NMDA 4
 2. Solution Overview . 4
 3. Solution Details . 5
 3.1. Query Parameters for a Targeted List or Leaf-List 5
 3.2. Query Parameter for Descendant Lists and Leaf-Lists . . . 8
 3.3. Constraints on "where" and "sort-by" for "config false"
 Lists . 9
 3.3.1. Identifying Constrained "config false" Lists and
 Leaf-Lists . 10
 3.3.2. Indicating the Constraints for "where" Filters and
 "sort-by" Expressions 11
 4. The "ietf-list-pagination" Module 11
 4.1. Data Model Overview 11
 4.2. Example Usage . 12
 4.2.1. Constraining a "config false" list 12
 4.2.2. Indicating number remaining in a limited list 13
 4.3. YANG Module . 13
 5. IANA Considerations . 20
 5.1. The "IETF XML" Registry 20
 5.2. The "YANG Module Names" Registry 21
 6. Security Considerations 21
 6.1. Regarding the "ietf-list-pagination" YANG Module 21
 7. References . 21
 7.1. Normative References 21
 7.2. Informative References 22
 Appendix A. Vector Tests . 22
 A.1. Example YANG Module 23
 A.2. Example Data Set . 30
 A.3. Example Queries . 34

Watsen, et al. Expires 12 September 2023 [Page 2]

Internet-Draft List Pagination March 2023

 A.3.1. The "limit" Parameter 35
 A.3.2. The "offset" Parameter 37
 A.3.3. The "cursor" Parameter 40
 A.3.4. The "direction" Parameter 45
 A.3.5. The "sort-by" Parameter 46
 A.3.6. The "where" Parameter 49
 A.3.7. The "sublist-limit" Parameter 51
 A.3.8. Combinations of Parameters 55
 Acknowledgements . 57
 Authors’ Addresses . 57

1. Introduction

 YANG modeled "list" and "leaf-list" nodes may contain a large number
 of entries. For instance, there may be thousands of entries in the
 configuration for network interfaces or access control lists. And
 time-driven logging mechanisms, such as an audit log or a traffic
 log, can contain millions of entries.

 Retrieval of all the entries can lead to inefficiencies in the
 server, the client, and the network in between. For instance,
 consider the following:

 * A client may need to filter and/or sort list entries in order to,
 e.g., present the view requested by a user.

 * A server may need to iterate over many more list entries than
 needed by a client.

 * A network may need to convey more data than needed by a client.

 Optimal global resource utilization is obtained when clients are able
 to cherry-pick just that which is needed to support the application-
 level business logic.

 This document defines a generic model for list pagination that can be
 implemented by YANG-driven management protocols such as NETCONF
 [RFC6241] and RESTCONF [RFC8040]. Details for how such protocols are
 updated are outside the scope of this document.

 The model presented in this document supports paging over optionally
 filtered and/or sorted entries. Server-side filtering and sorting is
 ideal as servers can leverage indexes maintained by a backend storage
 layer to accelerate queries.

Watsen, et al. Expires 12 September 2023 [Page 3]

Internet-Draft List Pagination March 2023

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here: client, data model, data tree, feature, extension, module,
 leaf, leaf-list, and server.

1.2. Conventions

 Various examples used in this document use a placeholder value for
 binary data that has been base64 encoded (e.g., "BASE64VALUE=").
 This placeholder value is used as real base64 encoded structures are
 often many lines long and hence distracting to the example being
 presented.

1.3. Adherence to the NMDA

 This document is compliant with the Network Management Datastore
 Architecture (NMDA) [RFC8342]. The "ietf-list-pagination" module
 only defines a YANG extension and augments a couple leafs into a
 "config false" node defined by the "ietf-system-capabilities" module.

2. Solution Overview

 The solution presented in this document broadly entails a client
 sending a query to a server targeting a specific list or leaf-list
 including optional parameters guiding which entries should be
 returned.

 A secondary aspect of this solution entails a client sending a query
 parameter to a server guiding how descendent lists and leaf-lists
 should be returned. This parameter may be used on any target node,
 not just "list" and "leaf-list" nodes.

 Clients detect a server’s support for list pagination via an entry
 for the "ietf-list-pagination" module (defined in Section 4) in the
 server’s YANG Library [RFC8525] response.

 Relying on client-provided query parameters ensures servers remain
 backward compatible with legacy clients.

Watsen, et al. Expires 12 September 2023 [Page 4]

Internet-Draft List Pagination March 2023

3. Solution Details

 This section is composed of the following subsections:

 * Section 3.1 defines five query parameters clients may use to page
 through the entries of a single list or leaf-list in a data tree.

 * Section 3.2 defines one query parameter that clients may use to
 affect the content returned for descendant lists and leaf-lists.

 * Section 3.3 defines per schema-node tags enabling servers to
 indicate which "config false" lists are constrained and how they
 may be interacted with.

3.1. Query Parameters for a Targeted List or Leaf-List

 The five query parameters presented this section are listed in
 processing order. This processing order is logical, efficient, and
 matches the processing order implemented by database systems, such as
 SQL.

 The order is as follows: a server first processes the "where"
 parameter (see Section 3.1.1), then the "sort-by" parameter (see
 Section 3.1.2), then the "direction" parameter (see Section 3.1.3),
 and either a combination of the "offset" parameter (see
 Section 3.1.4) or the "cursor" parameter (see Section 3.1.5), and
 lastly "the "limit" parameter (see Section 3.1.6).

3.1.1. The "where" Query Parameter

 Description
 The "where" query parameter specifies a filter expression that
 result-set entries must match.

 Default Value
 If this query parameter is unspecified, then no entries are
 filtered from the working result-set.

 Allowed Values
 The allowed values are XPath 1.0 expressions. It is an error if
 the XPath expression references a node identifier that does not
 exist in the schema, is optional or conditional in the schema or,
 for constrained "config false" lists and leaf-lists (see
 Section 3.3), if the node identifier does not point to a node
 having the "indexed" extension statement applied to it (see
 Section 3.3.2).

Watsen, et al. Expires 12 September 2023 [Page 5]

Internet-Draft List Pagination March 2023

 Conformance
 The "where" query parameter MUST be supported for all "config
 true" lists and leaf-lists and SHOULD be supported for "config
 false" lists and leaf-lists. Servers MAY disable the support for
 some or all "config false" lists and leaf-lists as described in
 Section 3.3.2.

3.1.2. The "sort-by" Query Parameter

 Description
 The "sort-by" query parameter indicates the node in the working
 result-set (i.e., after the "where" parameter has been applied)
 that entries should be sorted by. Sorts are in ascending order
 (e.g., ’1’ before ’9’, ’a’ before ’z’, etc.). Missing values are
 sorted to the end (e.g., after all nodes having values). Sub-
 sorts are not supported.

 Default Value
 If this query parameter is unspecified, then the list or leaf-
 list’s default order is used, per the YANG "ordered-by" statement
 (see Section 7.7.7 of [RFC7950]).

 Allowed Values
 The allowed values are node identifiers. It is an error if the
 specified node identifier does not exist in the schema, is
 optional or conditional in the schema or, for constrained "config
 false" lists and leaf-lists (see Section 3.3), if the node
 identifier does not point to a node having the "indexed" extension
 statement applied to it (see Section 3.3.2).

 Conformance
 The "sort-by" query parameter MUST be supported for all "config
 true" lists and leaf-lists and SHOULD be supported for "config
 false" lists and leaf-lists. Servers MAY disable the support for
 some or all "config false" lists and leaf-lists as described in
 Section 3.3.2.

3.1.3. The "direction" Query Parameter

 Description
 The "direction" query parameter indicates how the entries in the
 working result-set (i.e., after the "sort-by" parameter has been
 applied) should be traversed.

 Default Value
 If this query parameter is unspecified, the default value is
 "forwards".

Watsen, et al. Expires 12 September 2023 [Page 6]

Internet-Draft List Pagination March 2023

 Allowed Values
 The allowed values are:

 forwards
 Return entries in the forwards direction. Also known as the
 "default" or "ascending" direction.

 backwards
 Return entries in the backwards direction. Also known as the
 "reverse" or "descending" direction

 Conformance
 The "direction" query parameter MUST be supported for all lists
 and leaf-lists.

3.1.4. The "offset" Query Parameter

 Description
 The "offset" query parameter indicates the number of entries in
 the working result-set (i.e., after the "direction" parameter has
 been applied) that should be skipped over when preparing the
 response.

 Default Value
 If this query parameter is unspecified, then no entries in the
 result-set are skipped, same as when the offset value ’0’ is
 specified.

 Allowed Values
 The allowed values are unsigned integers. It is an error for the
 offset value to exceed the number of entries in the working
 result-set, and the "offset-out-of-range" identity SHOULD be
 produced in the error output when this occurs.

 Conformance
 The "offset" query parameter MUST be supported for all lists and
 leaf-lists.

3.1.5. The "cursor" Query Parameter

 Description
 The "cursor" query parameter indicates where to start the working
 result-set (i.e., after the "direction" parameter has been
 applied), the elements before the cursor are skipped over when
 preparing the response. Furthermore the result-set is annotated
 with attributes for the next and previous cursors following a
 result-set constrained with the "limit" query parameter.

Watsen, et al. Expires 12 September 2023 [Page 7]

Internet-Draft List Pagination March 2023

 Default Value
 If this query parameter is unspecified, then no entries in the
 result-set are skipped.

 Allowed Values
 The allowed values are base64 encoded positions interpreted by the
 server to index an element in the list. It is an error to supply
 an unkown cursor for the working result-set, and the "cursor-not-
 found" identity SHOULD be produced in the error output when this
 occurs.

 Conformance
 The "cursor" query parameter MUST be supported for all lists.

3.1.6. The "limit" Query Parameter

 Description
 The "limit" query parameter limits the number of entries returned
 from the working result-set (i.e., after the "offset" parameter
 has been applied). Any list or leaf-list that is limited
 includes, somewhere in its encoding, a metadata value [RFC7952]
 called "remaining", a positive integer indicating the number of
 elements that were not included in the result-set by the "limit"
 operation, or the value "unknown" in case, e.g., the server
 determines that counting would be prohibitively expensive.

 Default Value
 If this query parameter is unspecified, the number of entries that
 may be returned is unbounded.

 Allowed Values
 The allowed values are positive integers.

 Conformance
 The "limit" query parameter MUST be supported for all lists and
 leaf-lists.

3.2. Query Parameter for Descendant Lists and Leaf-Lists

 Whilst this document primarily regards pagination for a list or leaf-
 list, it begs the question for how descendant lists and leaf-lists
 should be handled, which is addressed by the "sublist-limit" query
 parameter described in this section.

3.2.1. The "sublist-limit" Query Parameter

 Description

Watsen, et al. Expires 12 September 2023 [Page 8]

Internet-Draft List Pagination March 2023

 The "sublist-limit" parameter limits the number of entries
 returned for descendent lists and leaf-lists.

 Any descendent list or leaf-list limited by the "sublist-limit"
 parameter includes, somewhere in its encoding, a metadata value
 [RFC7952] called "remaining", a positive integer indicating the
 number of elements that were not included by the "sublist-limit"
 parameter, or the value "unknown" in case, e.g., the server
 determines that counting would be prohibitively expensive.

 When used on a list node, it only affects the list’s descendant
 nodes, not the list itself, which is only affected by the
 parameters presented in Section 3.1.

 Default Value
 If this query parameter is unspecified, the number of entries that
 may be returned for descendent lists and leaf-lists is unbounded.

 Allowed Values
 The allowed values are positive integers.

 Conformance
 The "sublist-limit" query parameter MUST be supported for all
 conventional nodes, including a datastore’s top-level node (i.e.,
 ’/’).

3.3. Constraints on "where" and "sort-by" for "config false" Lists

 Some "config false" lists and leaf-lists may contain an enormous
 number of entries. For instance, a time-driven logging mechanism,
 such as an audit log or a traffic log, can contain millions of
 entries.

 In such cases, "where" and "sort-by" expressions will not perform
 well if the server must bring each entry into memory in order to
 process it.

 The server’s best option is to leverage query-optimizing features
 (e.g., indexes) built into the backend database holding the dataset.

 However, arbitrary "where" expressions and "sort-by" node identifiers
 into syntax supported by the backend database and/or query-optimizers
 may prove challenging, if not impossible, to implement.

 Thusly this section introduces mechanisms whereby a server can:

 1. Identify which "config false" lists and leaf-lists are
 constrained.

Watsen, et al. Expires 12 September 2023 [Page 9]

Internet-Draft List Pagination March 2023

 2. Identify what node-identifiers and expressions are allowed for
 the constrained lists and leaf-lists.

 | Note: The pagination performance for "config true" lists and
 | leaf-lists is not considered as already servers must be able to
 | process them as configuration. Whilst some "config true’ lists
 | and leaf-lists may contain thousands of entries, they are well
 | within the capability of server-side processing.

3.3.1. Identifying Constrained "config false" Lists and Leaf-Lists

 Identification of which lists and leaf-lists are constrained occurs
 in the schema tree, not the data tree. However, as server abilities
 vary, it is not possible to define constraints in YANG modules
 defining generic data models.

 In order to enable servers to identify which lists and leaf-lists are
 constrained, the solution presented in this document augments the
 data model defined by the "ietf-system-capabilities" module presented
 in [I-D.ietf-netconf-notification-capabilities].

 Specifically, the "ietf-list-pagination" module (see Section 4)
 augments an empty leaf node called "constrained" into the "per-node-
 capabilities" node defined in the "ietf-system-capabilities" module.

 The "constrained" leaf MAY be specified for any "config false" list
 or leaf-list.

 When a list or leaf-list is constrained:

 * All parts of XPath 1.0 expressions are disabled unless explicitly
 enabled by Section 3.3.2.

 * Node-identifiers used in "where" expressions and "sort-by" filters
 MUST have the "indexed" leaf applied to it (see Section 3.3.2).

 * For lists only, node-identifiers used in "where" expressions and
 "sort-by" filters MUST NOT descend past any descendent lists.
 This ensures that only indexes relative to the targeted list are
 used. Further constraints on node identifiers MAY be applied in
 Section 3.3.2.

Watsen, et al. Expires 12 September 2023 [Page 10]

Internet-Draft List Pagination March 2023

3.3.2. Indicating the Constraints for "where" Filters and "sort-by"
 Expressions

 This section identifies how constraints for "where" filters and
 "sort-by" expressions are specified. These constraints are valid
 only if the "constrained" leaf described in the previous section
 Section 3.3.1 has been set on the immediate ancestor "list" node or,
 for "leaf-list" nodes, on itself.

3.3.2.1. Indicating Filterable/Sortable Nodes

 For "where" filters, an unconstrained XPath expressions may use any
 node in comparisons. However, efficient mappings to backend
 databases may support only a subset of the nodes.

 Similarly, for "sort-by" expressions, efficient sorts may only
 support a subset of the nodes.

 In order to enable servers to identify which nodes may be used in
 comparisons (for both "where" and "sort-by" expressions), the "ietf-
 list-pagination" module (see Section 4) augments an empty leaf node
 called "indexed" into the "per-node-capabilities" node defined in the
 "ietf-system-capabilities" module (see
 [I-D.ietf-netconf-notification-capabilities]).

 When a "list" or "leaf-list" node has the "constrained" leaf, only
 nodes having the "indexed" node may be used in "where" and/or "sort-
 by" expressions. If no nodes have the "indexed" leaf, when the
 "constrained" leaf is present, then "where" and "sort-by" expressions
 are disabled for that list or leaf-list.

4. The "ietf-list-pagination" Module

 The "ietf-list-pagination" module is used by servers to indicate that
 they support pagination on YANG "list" and "leaf-list" nodes, and to
 provide an ability to indicate which "config false" list and/or
 "leaf-list" nodes are constrained and, if so, which nodes may be used
 in "where" and "sort-by" expressions.

4.1. Data Model Overview

 The following tree diagram [RFC8340] illustrates the "ietf-list-
 pagination" module:

Watsen, et al. Expires 12 September 2023 [Page 11]

Internet-Draft List Pagination March 2023

 module: ietf-list-pagination

 augment /sysc:system-capabilities/sysc:datastore-capabilities
 /sysc:per-node-capabilities:
 +--ro constrained? empty
 +--ro indexed? empty

 Comments:

 * As shown, this module augments two optional leaves into the "node-
 selector" node of the "ietf-system-capabilities" module.

 * Not shown is that the module also defines an "md:annotation"
 statement named "remaining". This annotation may be present in a
 server’s response to a client request containing either the
 "limit" (Section 3.1.6) or "sublist-limit" parameters
 (Appendix A.3.7).

4.2. Example Usage

4.2.1. Constraining a "config false" list

 The following example illustrates the "ietf-list-pagination" module’s
 augmentations of the "system-capabilities" data tree. This example
 assumes the "example-social" module defined in the Appendix A.1 is
 implemented.

Watsen, et al. Expires 12 September 2023 [Page 12]

Internet-Draft List Pagination March 2023

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <system-capabilities
 xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:es="http://example.com/ns/example-social"
 xmlns:lpg="urn:ietf:params:xml:ns:yang:ietf-list-pagination">
 <datastore-capabilities>
 <datastore>ds:operational</datastore>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log</node-selector>
 <lpg:constrained/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:timestamp</node-\
 selector>
 <lpg:indexed/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:member-id</node-\
 selector>
 <lpg:indexed/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:outcome</node-se\
 lector>
 <lpg:indexed/>
 </per-node-capabilities>
 </datastore-capabilities>
 </system-capabilities>

4.2.2. Indicating number remaining in a limited list

 FIXME: valid syntax for ’where’?

4.3. YANG Module

 This YANG module has normative references to [RFC7952] and
 [I-D.ietf-netconf-notification-capabilities].

 <CODE BEGINS> file "ietf-list-pagination@2023-03-11.yang"

 module ietf-list-pagination {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-list-pagination";
 prefix lpg;

Watsen, et al. Expires 12 September 2023 [Page 13]

Internet-Draft List Pagination March 2023

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-yang-metadata {
 prefix md;
 reference
 "RFC 7952: Defining and Using Metadata with YANG";
 }

 import ietf-system-capabilities {
 prefix sysc;
 reference
 "draft-ietf-netconf-notification-capabilities:
 YANG Modules describing Capabilities for
 Systems and Datastore Update Notifications";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>";

 description
 "This module is used by servers to 1) indicate they support
 pagination on ’list’ and ’leaf-list’ resources, 2) define a
 grouping for each list-pagination parameter, and 3) indicate
 which ’config false’ lists have constrained ’where’ and
 ’sort-by’ parameters and how they may be used, if at all.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.

Watsen, et al. Expires 12 September 2023 [Page 14]

Internet-Draft List Pagination March 2023

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2023-03-11 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: List Pagination for YANG-driven Protocols";
 }

 // Annotations

 md:annotation remaining {
 type union {
 type uint32;
 type enumeration {
 enum "unknown" {
 description
 "Indicates that number of remaining entries is unknown
 to the server in case, e.g., the server has determined
 that counting would be prohibitively expensive.";
 }
 }
 }
 description
 "This annotation contains the number of elements not included
 in the result set (a positive value) due to a ’limit’ or
 ’sublist-limit’ operation. If no elements were removed,
 this annotation MUST NOT appear. The minimum value (0),
 which never occurs in normal operation, is reserved to
 represent ’unknown’. The maximum value (2^32-1) is
 reserved to represent any value greater than or equal
 to 2^32-1 elements.";
 }

 // Identities

 identity list-pagination-error {
 description
 "Base identity for list-pagination errors.";
 }

 identity offset-out-of-range {

Watsen, et al. Expires 12 September 2023 [Page 15]

Internet-Draft List Pagination March 2023

 base list-pagination-error;
 description
 "The ’offset’ query parameter value is greater than the number
 of instances in the target list or leaf-list resource.";
 }

 identity cursor-not-found {
 base list-pagination-error;
 description
 "The ’cursor’ query parameter value is unknown for the target
 list.";
 }

 // Groupings

 grouping where-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf where {
 type union {
 type yang:xpath1.0;
 type enumeration {
 enum "unfiltered" {
 description
 "Indicates that no entries are to be filtered
 from the working result-set.";
 }
 }
 }
 default "unfiltered";
 description
 "The ’where’ parameter specifies a boolean expression
 that result-set entries must match.

 It is an error if the XPath expression references a node
 identifier that does not exist in the schema, is optional
 or conditional in the schema or, for constrained ’config
 false’ lists and leaf-lists, if the node identifier does
 not point to a node having the ’indexed’ extension
 statement applied to it (see RFC XXXX).";
 }
 }

 grouping sort-by-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";

Watsen, et al. Expires 12 September 2023 [Page 16]

Internet-Draft List Pagination March 2023

 leaf sort-by {
 type union {
 type string {
 // An RFC 7950 ’descendant-schema-nodeid’.
 pattern ’([0-9a-fA-F]*:)?[0-9a-fA-F]*’
 + ’(/([0-9a-fA-F]*:)?[0-9a-fA-F]*)*’;
 }
 type enumeration {
 enum "none" {
 description
 "Indicates that the list or leaf-list’s default
 order is to be used, per the YANG ’ordered-by’
 statement.";
 }
 }
 }
 default "none";
 description
 "The ’sort-by’ parameter indicates the node in the
 working result-set (i.e., after the ’where’ parameter
 has been applied) that entries should be sorted by.

 Sorts are in ascending order (e.g., ’1’ before ’9’,
 ’a’ before ’z’, etc.). Missing values are sorted to
 the end (e.g., after all nodes having values).";
 }
 }

 grouping direction-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf direction {
 type enumeration {
 enum forwards {
 description
 "Indicates that entries should be traversed from
 the first to last item in the working result set.";
 }
 enum backwards {
 description
 "Indicates that entries should be traversed from
 the last to first item in the working result set.";
 }
 }
 default "forwards";
 description
 "The ’direction’ parameter indicates how the entries in the

Watsen, et al. Expires 12 September 2023 [Page 17]

Internet-Draft List Pagination March 2023

 working result-set (i.e., after the ’sort-by’ parameter
 has been applied) should be traversed.";
 }
 }

 grouping cursor-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf cursor {
 type string;
 description
 "The ’cursor’ parameter indicates where to start the working
 result-set (i.e. after the ’direction’ parameter has been
 applied), the elements before the cursor are skipped over
 when preparing the response. Furthermare the result-set is
 annotated with attributes for the next and previous cursors
 following a result-set constrained with the ’limit’ query
 parameter.";
 }
 }

 grouping offset-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf offset {
 type uint32;
 default 0;
 description
 "The ’offset’ parameter indicates the number of entries
 in the working result-set (i.e., after the ’direction’
 parameter has been applied) that should be skipped over
 when preparing the response.";
 }
 }

 grouping limit-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf limit {
 type union {
 type uint32 {
 range "1..max";
 }
 type enumeration {
 enum "unbounded" {

Watsen, et al. Expires 12 September 2023 [Page 18]

Internet-Draft List Pagination March 2023

 description
 "Indicates that the number of entries that may be
 returned is unbounded.";
 }
 }
 }
 default "unbounded";
 description
 "The ’limit’ parameter limits the number of entries returned
 from the working result-set (i.e., after the ’offset’
 parameter has been applied).

 Any result-set that is limited includes, somewhere in its
 encoding, the metadata value ’remaining’ to indicate the
 number entries not included in the result set.";
 }
 }

 grouping sublist-limit-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf sublist-limit {
 type union {
 type uint32 {
 range "1..max";
 }
 type enumeration {
 enum "unbounded" {
 description
 "Indicates that the number of entries that may be
 returned is unbounded.";
 }
 }
 }
 default "unbounded";
 description
 "The ’sublist-limit’ parameter limits the number of entries
 for descendent lists and leaf-lists.

 Any result-set that is limited includes, somewhere in
 its encoding, the metadata value ’remaining’ to indicate
 the number entries not included in the result set.";
 }
 }

 // Protocol-accessible nodes

Watsen, et al. Expires 12 September 2023 [Page 19]

Internet-Draft List Pagination March 2023

 augment // FIXME: ensure datastore == <operational>
 "/sysc:system-capabilities/sysc:datastore-capabilities"
 + "/sysc:per-node-capabilities" {
 description
 "Defines some leafs that MAY be used by the server to
 describe constraints imposed of the ’where’ filters and
 ’sort-by’ parameters used in list pagination queries.";
 leaf constrained {
 type empty;
 description
 "Indicates that ’where’ filters and ’sort-by’ parameters
 on the targeted ’config false’ list node are constrained.
 If a list is not ’constrained’, then full XPath 1.0
 expressions may be used in ’where’ filters and all node
 identifiers are usable by ’sort-by’.";
 }
 leaf indexed {
 type empty;
 description
 "Indicates that the targeted descendent node of a
 ’constrained’ list (see the ’constrained’ leaf) may be
 used in ’where’ filters and/or ’sort-by’ parameters.
 If a descendent node of a ’constrained’ list is not
 ’indexed’, then it MUST NOT be used in ’where’ filters
 or ’sort-by’ parameters.";
 }
 }
 }

 <CODE ENDS>

5. IANA Considerations

5.1. The "IETF XML" Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688] maintained at
 https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns.
 Following the format in [RFC3688], the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-list-pagination
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

Watsen, et al. Expires 12 September 2023 [Page 20]

Internet-Draft List Pagination March 2023

5.2. The "YANG Module Names" Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020] maintained at https://www.iana.org/assignments/
 yang-parameters/yang-parameters.xhtml. Following the format defined
 in [RFC6020], the below registration is requested:

 name: ietf-list-pagination
 namespace: urn:ietf:params:xml:ns:yang:ietf-list-pagination
 prefix: lpg
 RFC: XXXX

6. Security Considerations

6.1. Regarding the "ietf-list-pagination" YANG Module

 Pursuant the template defined in ...FIXME

7. References

7.1. Normative References

 [I-D.ietf-netconf-notification-capabilities]
 Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", Work in Progress, Internet-Draft, draft-
 ietf-netconf-notification-capabilities-21, 15 October
 2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
 netconf-notification-capabilities-21>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

Watsen, et al. Expires 12 September 2023 [Page 21]

Internet-Draft List Pagination March 2023

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

Appendix A. Vector Tests

 This normative appendix section illustrates every notable edge
 condition conceived during this document’s production.

 Test inputs and outputs are provided in a manner that is both generic
 and concise.

 Management protocol specific documents need only reproduce as many of
 these tests as necessary to convey pecularities presented by the
 protocol.

Watsen, et al. Expires 12 September 2023 [Page 22]

Internet-Draft List Pagination March 2023

 Implementations are RECOMMENDED to implement the tests presented in
 this document, in addition to any tests that may be presented in
 protocol specific documents.

A.1. Example YANG Module

 The vector tests assume the "example-social" YANG module defined in
 this section.

 This module has been specially crafted to cover every notable edge
 condition, especially with regards to the types of the data nodes.

 Following is the tree diagram [RFC8340] for the "example-social"
 module:

Watsen, et al. Expires 12 September 2023 [Page 23]

Internet-Draft List Pagination March 2023

 module: example-social
 +--rw members
 | +--rw member* [member-id]
 | +--rw member-id string
 | +--rw email-address inet:email-address
 | +--rw password ianach:crypt-hash
 | +--rw avatar? binary
 | +--rw tagline? string
 | +--rw privacy-settings
 | | +--rw hide-network? boolean
 | | +--rw post-visibility? enumeration
 | +--rw following* -> /members/member/member-id
 | +--rw posts
 | | +--rw post* [timestamp]
 | | +--rw timestamp yang:date-and-time
 | | +--rw title? string
 | | +--rw body string
 | +--rw favorites
 | | +--rw uint8-numbers* uint8
 | | +--rw uint64-numbers* uint64
 | | +--rw int8-numbers* int8
 | | +--rw int64-numbers* int64
 | | +--rw decimal64-numbers* decimal64
 | | +--rw bits* bits
 | +--ro stats
 | +--ro joined yang:date-and-time
 | +--ro membership-level enumeration
 | +--ro last-activity? yang:date-and-time
 +--ro audit-logs
 +--ro audit-log* []
 +--ro timestamp yang:date-and-time
 +--ro member-id string
 +--ro source-ip inet:ip-address
 +--ro request string
 +--ro outcome boolean

 Following is the YANG [RFC7950] for the "example-social" module:

 module example-social {
 yang-version 1.1;
 namespace "http://example.com/ns/example-social";
 prefix es;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

Watsen, et al. Expires 12 September 2023 [Page 24]

Internet-Draft List Pagination March 2023

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import iana-crypt-hash {
 prefix ianach;
 reference
 "RFC 7317: A YANG Data Model for System Management";
 }

 organization "Example, Inc.";
 contact "support@example.com";
 description "Example Social Data Model.";

 revision 2023-03-11 {
 description
 "Initial version.";
 reference
 "RFC XXXX: Example social module.";
 }

 container members {
 description
 "Container for list of members.";
 list member {
 key "member-id";
 description
 "List of members.";

 leaf member-id {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "The member’s identifier.";
 }

 leaf email-address {
 type inet:email-address;
 mandatory true;
 description
 "The member’s email address.";
 }

Watsen, et al. Expires 12 September 2023 [Page 25]

Internet-Draft List Pagination March 2023

 leaf password {
 type ianach:crypt-hash;
 mandatory true;
 description
 "The member’s hashed-password.";
 }

 leaf avatar {
 type binary;
 description
 "An binary image file.";
 }

 leaf tagline {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "The member’s tagline.";
 }

 container privacy-settings {
 leaf hide-network {
 type boolean;
 description
 "Hide who you follow and who follows you.";
 }
 leaf post-visibility {
 type enumeration {
 enum public {
 description
 "Posts are public.";
 }
 enum unlisted {
 description
 "Posts are unlisted, though visable to all.";
 }
 enum followers-only {
 description
 "Posts only visible to followers.";
 }
 }
 default public;
 description
 "The post privacy setting.";

Watsen, et al. Expires 12 September 2023 [Page 26]

Internet-Draft List Pagination March 2023

 }
 description
 "Preferences for the member.";
 }

 leaf-list following {
 type leafref {
 path "/members/member/member-id";
 }
 description
 "Other members this members is following.";
 }

 container posts {
 description
 "The member’s posts.";
 list post {
 key timestamp;
 leaf timestamp {
 type yang:date-and-time;
 description
 "The timestamp for the member’s post.";
 }
 leaf title {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "A one-line title.";
 }
 leaf body {
 type string;
 mandatory true;
 description
 "The body of the post.";
 }
 description
 "A list of posts.";
 }
 }

 container favorites {
 description
 "The member’s favorites.";
 leaf-list uint8-numbers {

Watsen, et al. Expires 12 September 2023 [Page 27]

Internet-Draft List Pagination March 2023

 type uint8;
 ordered-by user;
 description
 "The member’s favorite uint8 numbers.";
 }
 leaf-list uint64-numbers {
 type uint64;
 ordered-by user;
 description
 "The member’s favorite uint64 numbers.";
 }
 leaf-list int8-numbers {
 type int8;
 ordered-by user;
 description
 "The member’s favorite int8 numbers.";
 }
 leaf-list int64-numbers {
 type int64;
 ordered-by user;
 description
 "The member’s favorite uint64 numbers.";
 }
 leaf-list decimal64-numbers {
 type decimal64 {
 fraction-digits 5;
 }
 ordered-by user;
 description
 "The member’s favorite decimal64 numbers.";
 }
 leaf-list bits {
 type bits {
 bit zero {
 position 0;
 description "zero";
 }
 bit one {
 position 1;
 description "one";
 }
 bit two {
 position 2;
 description "two";
 }
 }
 ordered-by user;
 description

Watsen, et al. Expires 12 September 2023 [Page 28]

Internet-Draft List Pagination March 2023

 "The member’s favorite bits.";
 }
 }

 container stats {
 config false;
 description
 "Operational state members values.";
 leaf joined {
 type yang:date-and-time;
 mandatory true;
 description
 "Timestamp when member joined.";
 }
 leaf membership-level {
 type enumeration {
 enum admin {
 description
 "Site administrator.";
 }
 enum standard {
 description
 "Standard membership level.";
 }
 enum pro {
 description
 "Professional membership level.";
 }
 }
 mandatory true;
 description
 "The membership level for this member.";
 }
 leaf last-activity {
 type yang:date-and-time;
 description
 "Timestamp of member’s last activity.";
 }
 }
 }
 }

 container audit-logs {
 config false;
 description
 "Audit log configuration";
 list audit-log {
 description

Watsen, et al. Expires 12 September 2023 [Page 29]

Internet-Draft List Pagination March 2023

 "List of audit logs.";
 leaf timestamp {
 type yang:date-and-time;
 mandatory true;
 description
 "The timestamp for the event.";
 }
 leaf member-id {
 type string;
 mandatory true;
 description
 "The ’member-id’ of the member.";
 }
 leaf source-ip {
 type inet:ip-address;
 mandatory true;
 description
 "The apparent IP address the member used.";
 }
 leaf request {
 type string;
 mandatory true;
 description
 "The member’s request.";
 }
 leaf outcome {
 type boolean;
 mandatory true;
 description
 "Indicate if request was permitted.";
 }
 }
 }
 }

A.2. Example Data Set

 The examples assume the server’s operational state as follows.

 The data is provided in JSON only for convenience and, in particular,
 has no bearing on the "generic" nature of the tests themselves.

 {
 "example-social:members": {
 "member": [
 {
 "member-id": "bob",
 "email-address": "bob@example.com",

Watsen, et al. Expires 12 September 2023 [Page 30]

Internet-Draft List Pagination March 2023

 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 },
 {
 "timestamp": "2020-08-14T03:33:55Z",
 "body": "What’s new?"
 },
 {
 "timestamp": "2020-08-14T03:34:30Z",
 "body": "I’m bored..."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159", "2.71828"]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 },
 {
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"
 }
]
 },
 "favorites": {
 "bits": ["two", "one", "zero"]
 },
 "stats": {

Watsen, et al. Expires 12 September 2023 [Page 31]

Internet-Draft List Pagination March 2023

 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",
 "last-activity": "2020-09-17T18:02:04Z"
 }
 },
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": false,
 "post-visibility": "public"
 },
 "following": ["bob", "eric", "lin"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 },
 {
 "timestamp": "2020-07-09T01:32:23Z",
 "title": "Sleepy...",
 "body": "Catch y’all tomorrow."
 }
]
 },
 "favorites": {
 "uint8-numbers": [17, 13, 11, 7, 5, 3],
 "int8-numbers": [-5, -3, -1, 1, 3, 5]
 },
 "stats": {
 "joined": "2020-07-08T12:38:32Z",
 "membership-level": "admin",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "lin",
 "email-address": "lin@example.com",
 "password": "$0$1543",
 "privacy-settings": {
 "hide-network": true,
 "post-visibility": "followers-only"
 },

Watsen, et al. Expires 12 September 2023 [Page 32]

Internet-Draft List Pagination March 2023

 "following": ["joe", "eric", "alice"],
 "stats": {
 "joined": "2020-07-09T12:38:32Z",
 "membership-level": "standard",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "joe",
 "email-address": "joe@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Greatness is measured by courage and heart.",
 "privacy-settings": {
 "post-visibility": "unlisted"
 },
 "following": ["bob"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-10-17T18:02:04Z",
 "body": "What’s your status?"
 }
]
 },
 "stats": {
 "joined": "2020-10-08T12:38:32Z",
 "membership-level": "pro",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 }
]
 },
 "example-social:audit-logs": {
 "audit-log": [
 {
 "timestamp": "2020-10-11T06:47:59Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/2043",
 "outcome": true
 },
 {
 "timestamp": "2020-11-01T15:22:01Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",
 "request": "POST /groups/group/123",
 "outcome": false

Watsen, et al. Expires 12 September 2023 [Page 33]

Internet-Draft List Pagination March 2023

 },
 {
 "timestamp": "2020-12-12T21:00:28Z",
 "member-id": "eric",
 "source-ip": "192.168.254.1",
 "request": "POST /groups/group/10",
 "outcome": true
 },
 {
 "timestamp": "2021-01-03T06:47:59Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/333",
 "outcome": true
 },
 {
 "timestamp": "2021-01-21T10:00:00Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",
 "request": "POST /groups/group/42",
 "outcome": true
 },
 {
 "timestamp": "2020-02-07T09:06:21Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/1202",
 "outcome": true
 },
 {
 "timestamp": "2020-02-28T02:48:11Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",
 "request": "POST /groups/group/345",
 "outcome": true
 }
]
 }
 }

A.3. Example Queries

 The following sections are presented in reverse query-parameters
 processing order. Starting with the simplest (limit) and ending with
 the most complex (where).

 All the vector tests are presented in a protocol-independent manner.
 JSON is used only for its conciseness.

Watsen, et al. Expires 12 September 2023 [Page 34]

Internet-Draft List Pagination March 2023

A.3.1. The "limit" Parameter

 Noting that "limit" must be a positive number, the edge condition
 values are ’1’, ’2’, num-elements-1, num-elements, and num-
 elements+1.

 | If ’0’ were a valid limit value, it would always return an
 | empty result set. Any value greater than or equal to num-
 | elements results the entire result set, same as when "limit" is
 | unspecified.

 These vector tests assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which has six
 values, thus the edge condition "limit" values are: ’1’, ’2’, ’5’,
 ’6’, and ’7’.

A.3.1.1. limit=1

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 1

 RESPONSE

 {
 "example-social:uint8-numbers": [17],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 5
 }
]
 }

A.3.1.2. limit=2

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 35]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 4
 }
]
 }

A.3.1.3. limit=5

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 5

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 1
 }
]
 }

A.3.1.4. limit=6

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 36]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 6

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.1.5. limit=7

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 7

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.2. The "offset" Parameter

 Noting that "offset" must be an unsigned number less than or equal to
 the num-elements, the edge condition values are ’0’, ’1’, ’2’, num-
 elements-1, num-elements, and num-elements+1.

 These vector tests again assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which has six
 values, thus the edge condition "limit" values are: ’0’, ’1’, ’2’,
 ’5’, ’6’, and ’7’.

A.3.2.1. offset=0

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 37]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 0
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.2.2. offset=1

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 1
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [13, 11, 7, 5, 3]
 }

A.3.2.3. offset=2

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 2
 Limit: -

 RESPONSE

Watsen, et al. Expires 12 September 2023 [Page 38]

Internet-Draft List Pagination March 2023

 {
 "example-social:uint8-numbers": [11, 7, 5, 3]
 }

A.3.2.4. offset=5

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 5
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [3]
 }

A.3.2.5. offset=6

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 6
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": []
 }

A.3.2.6. offset=7

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 39]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 7
 Limit: -

 RESPONSE

 ERROR

A.3.3. The "cursor" Parameter

 Noting that "cursor" must be an base64 encoded opaque value which
 addresses an element in a list.

 | The default value is empty, which is the same as supplying the
 | cursor value for the first element in the list.

 These vector tests assume the target "/example-social:members/member"
 which has five members.

 | Note that response has added attributes describing the result
 | set and position in pagination.

A.3.3.1. cursor=&limit=2

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: -

 RESPONSE

 {
 "example-social:member": [
 {
 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",

Watsen, et al. Expires 12 September 2023 [Page 40]

Internet-Draft List Pagination March 2023

 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 },
 {
 "timestamp": "2020-08-14T03:33:55Z",
 "body": "What’s new?"
 },
 {
 "timestamp": "2020-08-14T03:34:30Z",
 "body": "I’m bored..."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159", "2.71828"]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 },
 {
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"
 }
]
 },
 "favorites": {
 "bits": ["two", "one", "zero"]
 },
 "stats": {
 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",

Watsen, et al. Expires 12 September 2023 [Page 41]

Internet-Draft List Pagination March 2023

 "last-activity": "2020-09-17T18:02:04Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 3,
 "ietf-list-pagination:previous": "",
 "ietf-list-pagination:next": "YWxpY2U=" // alice
 }
]
 }

A.3.3.2. cursor="YWxpY2U="&limit=2

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: YWxpY2U=

 RESPONSE

 {
 "example-social:member": [
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": false,
 "post-visibility": "public"
 },
 "following": ["bob", "eric", "lin"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 },

Watsen, et al. Expires 12 September 2023 [Page 42]

Internet-Draft List Pagination March 2023

 {
 "timestamp": "2020-07-09T01:32:23Z",
 "title": "Sleepy...",
 "body": "Catch y’all tomorrow."
 }
]
 },
 "favorites": {
 "uint8-numbers": [17, 13, 11, 7, 5, 3],
 "int8-numbers": [-5, -3, -1, 1, 3, 5]
 },
 "stats": {
 "joined": "2020-07-08T12:38:32Z",
 "membership-level": "admin",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "lin",
 "email-address": "lin@example.com",
 "password": "$0$1543",
 "privacy-settings": {
 "hide-network": true,
 "post-visibility": "followers-only"
 },
 "following": ["joe", "eric", "alice"],
 "stats": {
 "joined": "2020-07-09T12:38:32Z",
 "membership-level": "standard",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 1,
 "ietf-list-pagination:previous": "ZXJpYw==", // eric
 "ietf-list-pagination:next": "am9l" // joe
 }
]
 }

A.3.3.3. cursor="am9l"&limit=2

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 43]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: am9l

 RESPONSE

 {
 "example-social:member": [
 {
 "member-id": "joe",
 "email-address": "joe@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Greatness is measured by courage and heart.",
 "privacy-settings": {
 "post-visibility": "unlisted"
 },
 "following": ["bob"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-10-17T18:02:04Z",
 "body": "What’s your status?"
 }
]
 },
 "stats": {
 "joined": "2020-10-08T12:38:32Z",
 "membership-level": "pro",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 0,
 "ietf-list-pagination:previous": "bGlu", // lin
 "ietf-list-pagination:next": ""
 }
]
 }

Watsen, et al. Expires 12 September 2023 [Page 44]

Internet-Draft List Pagination March 2023

A.3.4. The "direction" Parameter

 Noting that "direction" is an enumeration with two values, the edge
 condition values are each defined enumeration.

 | The value "forwards" is sometimes known as the "default" value,
 | as it produces the same result set as when "direction" is
 | unspecified.

 These vector tests again assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers". The number of
 elements is relevant to the edge condition values.

 | It is notable that "uint8-numbers" is an "ordered-by" user
 | leaf-list. Traversals are over the user-specified order, not
 | the numerically-sorted order, which is what the "sort-by"
 | parameter addresses. If this were an "ordered-by system" leaf-
 | list, then the traversals would be over the system-specified
 | order, again not a numerically-sorted order.

A.3.4.1. direction=forwards

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: forwards
 Offset: -
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.4.2. direction=backwards

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 45]

Internet-Draft List Pagination March 2023

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: backwards
 Offset: -
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]
 }

A.3.5. The "sort-by" Parameter

 Noting that the "sort-by" parameter is a node identifier, there is
 not so much "edge conditions" as there are "interesting conditions".
 This section provides examples for some interesting conditions.

A.3.5.1. the target node’s type

 The section provides three examples, one for a "leaf-list" and two
 for a "list", with one using a direct descendent and the other using
 an indirect descendent.

A.3.5.1.1. type is a "leaf-list"

 This example illustrates when the target node’s type is a "leaf-
 list". Note that a single period (i.e., ’.’) is used to represent
 the nodes to be sorted.

 This test again uses the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which is a
 leaf-list.

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: .
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 12 September 2023 [Page 46]

Internet-Draft List Pagination March 2023

 {
 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]
 }

A.3.5.1.2. type is a "list" and sort-by node is a direct descendent

 This example illustrates when the target node’s type is a "list" and
 a direct descendent is the "sort-by" node.

 This vector test uses the target "/example-social:members/member",
 which is a "list", and the sort-by descendent node "member-id", which
 is the "key" for the list.

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: member-id
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an ellipse (i.e.,
 | "...") is used to represent a missing subtree of data.

Watsen, et al. Expires 12 September 2023 [Page 47]

Internet-Draft List Pagination March 2023

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 }
]
 }

A.3.5.1.3. type is a "list" and sort-by node is an indirect descendent

 This example illustrates when the target node’s type is a "list" and
 an indirect descendent is the "sort-by" node.

 This vector test uses the target "/example-social:members/member",
 which is a "list", and the sort-by descendent node "stats/joined",
 which is a "config false" descendent leaf. Due to "joined" being a
 "config false" node, this request would have to target the "member"
 node in the <operational> datastore.

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: stats/joined
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 12 September 2023 [Page 48]

Internet-Draft List Pagination March 2023

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "lin",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 }
]
 }

A.3.5.2. handling missing entries

 The section provides one example for when the "sort-by" node is not
 present in the data set.

 FIXME: need to finish this section...

A.3.6. The "where" Parameter

 The "where" is an XPath 1.0 expression, there are numerous edge
 conditions to consider, e.g., the types of the nodes that are
 targeted by the expression.

A.3.6.1. match of leaf-list’s values

 FIXME

Watsen, et al. Expires 12 September 2023 [Page 49]

Internet-Draft List Pagination March 2023

A.3.6.2. match on descendent string containing a substring

 This example selects members that have an email address containing
 "@example.com".

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: //.[contains (@email-address,’@example.com’)]
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

 {
 "example-social:member": [
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 }
]
 }

Watsen, et al. Expires 12 September 2023 [Page 50]

Internet-Draft List Pagination March 2023

A.3.6.3. match on decendent timestamp starting with a substring

 This example selects members that have a posting whose timestamp
 begins with the string "2020".

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: //posts//post[starts-with(@timestamp,’2020’)]
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

 {
 "example-social:member": [
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "joe",
 ...
 }
]
 }

A.3.7. The "sublist-limit" Parameter

 The "sublist-limit" parameter may be used on any target node.

Watsen, et al. Expires 12 September 2023 [Page 51]

Internet-Draft List Pagination March 2023

A.3.7.1. target is a list entry

 This example uses the target node ’/example-social:members/
 member=alice’ in the <intended> datastore.

 | The target node is a specific list entry/element node, not the
 | YANG "list" node.

 This example sets the sublist-limit value ’1’, which returns just the
 first entry for all descendent lists and leaf-lists.

 Note that, in the response, the "remaining" metadata value is set on
 the first element of each descendent list and leaf-list having more
 than one value.

 REQUEST

 Datastore: <intended>
 Target: /example-social:members/member=alice
 Sublist-limit: 1
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 12 September 2023 [Page 52]

Internet-Draft List Pagination March 2023

 {
 "example-social:member": [
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": "false",
 "post-visibility": "public"
 },
 "following": ["bob"],
 "@following": [
 {
 "ietf-list-pagination:remaining": "2"
 }
],
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "1"
 },
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 }
]
 },
 "favorites": {
 "uint8-numbers": [17],
 "int8-numbers": [-5],
 "@uint8-numbers": [
 {
 "ietf-list-pagination:remaining": "5"
 }
],
 "@int8-numbers": [
 {
 "ietf-list-pagination:remaining": "5"
 }
]
 }
 }
]
 }

Watsen, et al. Expires 12 September 2023 [Page 53]

Internet-Draft List Pagination March 2023

A.3.7.2. target is a datastore

 This example uses the target node <intended>.

 This example sets the sublist-limit value ’1’, which returns just the
 first entry for all descendent lists and leaf-lists.

 Note that, in the response, the "remaining" metadata value is set on
 the first element of each descendent list and leaf-list having more
 than one value.

 REQUEST

 Datastore: <intended>
 Target: /
 Sublist-limit: 1
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 12 September 2023 [Page 54]

Internet-Draft List Pagination March 2023

 {
 "example-social:members": {
 "member": [
 {
 "@": {
 "ietf-list-pagination:remaining": "4"
 },
 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "2"
 },
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159"],
 "@decimal64-numbers": [
 {
 "ietf-list-pagination:remaining": "1"
 }
]
 }
 }
]
 }
 }

A.3.8. Combinations of Parameters

A.3.8.1. All six parameters at once

 REQUEST

Watsen, et al. Expires 12 September 2023 [Page 55]

Internet-Draft List Pagination March 2023

 Datastore: <operational>
 Target: /example-social:members/member
 Sublist-limit: 1
 Pagination Parameters:
 Where: //stats//joined[starts-with(@timestamp,’2020’)]
 Sort-by: member-id
 Direction: backwards
 Offset: 2
 Limit: 2

 RESPONSE

 {
 "example-social:member": [
 {
 "@": {
 "ietf-list-pagination:remaining": "1"
 },
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"
 }
]
 },
 "favorites": {
 "bits": ["two"],
 "@bits": [
 {
 "ietf-list-pagination:remaining": "2"
 }
]
 },
 "stats": {
 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",
 "last-activity": "2020-09-17T18:02:04Z"
 }
 },
 {

Watsen, et al. Expires 12 September 2023 [Page 56]

Internet-Draft List Pagination March 2023

 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "2"
 },
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159"],
 "@decimal64-numbers": [
 {
 "ietf-list-pagination:remaining": "1"
 }
]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 }
 }
 }

Acknowledgements

 The authors would like to thank the following for lively discussions
 on list (ordered by first name): Andy Bierman, Martin Björklund, and
 Robert Varga.

Authors’ Addresses

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

 Qin Wu
 Huawei Technologies

Watsen, et al. Expires 12 September 2023 [Page 57]

Internet-Draft List Pagination March 2023

 Email: bill.wu@huawei.com

 Olof Hagsand
 Netgate
 Email: olof@hagsand.se

 Hongwei Li
 Hewlett Packard Enterprise
 Email: flycoolman@gmail.com

 Per Andersson
 Cisco Systems
 Email: perander@cisco.com

Watsen, et al. Expires 12 September 2023 [Page 58]

Internet Engineering Task Force JG. Cumming

Internet-Draft Nokia

Intended status: Standards Track R. Wills

Expires: 22 April 2024 Cisco Systems

 20 October 2023

 NETCONF Private Candidates

 draft-ietf-netconf-privcand-01

Abstract

 This document provides a mechanism to extend the Network

 Configuration Protocol (NETCONF) and RESTCONF protocol to support

 multiple clients making configuration changes simultaneously and

 ensuring that they commit only those changes that they defined.

 This document addresses two specific aspects: The interaction with a

 private candidate over the NETCONF and RESTCONF protocols and the

 methods to identify and resolve conflicts between clients.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

Cumming & Wills Expires 22 April 2024 [Page 1]

Internet-Draft NETCONF Private Candidates October 2023

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Requirements Language 3

 2. Definitions and terminology 3

 2.1. Session specific datastore 4

 2.2. Shared candidate configuration 4

 2.3. Private candidate configuration 4

 3. Limitations using the shared candidate configuration for

 multiple clients . 5

 3.1. Issues . 5

 3.1.1. Unintended deployment of alternate users configuration

 changes . 5

 3.2. Current mitigation strategies 5

 3.2.1. Locking the shared candidate configuration

 datastore . 5

 3.2.2. Always use the running configuration datastore . . . 6

 3.2.3. Fine-grained locking 6

 4. Private candidates solution 6

 4.1. What is a private candidate 7

 4.2. When is a private candidate created 7

 4.3. When is a private candidate destroyed 7

 4.4. How to signal the use of private candidates 7

 4.4.1. Server . 7

 4.4.2. NETCONF client 8

 4.4.3. RESTCONF client 9

 4.5. Interaction between running and private-candidate(s) . . 10

 4.5.1. Static branch mode: Independent private candidate

 branch . 11

 4.5.2. Continuous rebase mode: Continually updating private

 candidate . 12

 4.6. Detecting and resolving conflicts 13

 4.6.1. What is a conflict? 13

 4.6.2. Detecting and reporting conflicts 13

 4.6.3. Conflict resolution 14

 4.6.4. Default resolution mode and advertisement of this

 mode . 21

 4.6.5. Supported resolution modes 22

 4.7. NETCONF operations 22

 4.7.1. New NETCONF operations 22

 4.7.2. Updated NETCONF operations 23

 5. IANA Considerations . 25

 6. Security Considerations 25

 7. References . 25

Cumming & Wills Expires 22 April 2024 [Page 2]

Internet-Draft NETCONF Private Candidates October 2023

 7.1. Normative References 25

 7.2. Informative References 26

 Appendix A. Behavior with unaltered NETCONF operations 26

 A.1. <get> . 26

 Contributors . 27

 Authors’ Addresses . 27

1. Introduction

 NETCONF [RFC6241] and RESTCONF [RFC8040] both provide a mechanism for

 one or more clients to make configuration changes to a device running

 as a NETCONF/RESTCONF server. Each client has the ability to make

 one or more configuration change to the servers shared candidate

 configuration.

 As the name shared candidate suggests, all clients have access to the

 same candidate configuration. This means that multiple clients may

 make changes to the shared candidate prior to the configuration being

 committed. This behavior may be undesirable as one client may

 unwittingly commit the configuration changes made by another client.

 NETCONF provides a way to mitigate this behavior by allowing clients

 to place a lock on the shared candidate. The placing of this lock

 means that no other client may make any changes until that lock is

 released. This behavior is, in many situations, also undesirable.

 Many network devices already support private candidates

 configurations, where a user (machine or otherwise) is able to edit a

 personal copy of a devices configuration without blocking other users

 from doing so.

 This document details the extensions to the NETCONF protocol in order

 to support the use of private candidates. It also describes how the

 RESTCONF protocol can be used on a system that implements private

 candidates.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. Definitions and terminology

Cumming & Wills Expires 22 April 2024 [Page 3]

Internet-Draft NETCONF Private Candidates October 2023

2.1. Session specific datastore

 A session specific datastore is a configuration datastore that,

 unlike the candidate and running configuration datastores which have

 only one per system, is bound to the specific NETCONF session.

2.2. Shared candidate configuration

 The candidate configuration datastore defined in [RFC6241] is

 referenced as the shared candidate configuration in this document.

2.3. Private candidate configuration

 A private candidate configuration is a session specific candidate

 configuration datastore.

 When a private candidate is used by NETCONF, the specific session

 (and user) that created the private candidate configuration is the

 only session (user) that has access to it over NETCONF. Devices may

 expose this to other users through other interfaces but this is out

 of scope for this document.

 When a private candidate is used by RESTCONF, it exists only for the

 duration of the RESTCONF request.

 The private candidate configuration contains a full copy of the

 running configuration when it is created (in the same way as a branch

 does in a source control management system and in the same way as the

 candidate configuration datastore as defined in [RFC6241]). Any

 changes made to it, for example, through the use of operations such

 as <edit-config> and <edit-data>, are made in this private candidate

 configuration.

 Obtaining this private candidate over NETCONF will display the entire

 configuration, including all changes made to it. Performing a

 <commit> operation will merge the changes from the private candidate

 into the running configuration (the same as a merge in source code

 management systems). A <discard-changes> operation will revert the

 private candidate to the branch’s initial state or it’s state at the

 last <commit> (whichever is most recent).

 All changes made to this private candidate configuration are held

 separately from any other candidate configuration changes, whether

 made by other users to the shared candidate or any other private

 candidate, and are not visible to or accessible by anyone else.

Cumming & Wills Expires 22 April 2024 [Page 4]

Internet-Draft NETCONF Private Candidates October 2023

3. Limitations using the shared candidate configuration for multiple

 clients

 The following sections describe some limitations and mitigation

 factors in more detail for the use of the shared candidate

 configuration during multi-client configuration over NETCONF or

 RESTCONF.

3.1. Issues

3.1.1. Unintended deployment of alternate users configuration changes

 Consider the following scenario:

 1. Client 1 modifies item A in the shared candidate configuration

 2. Client 2 then modifies item B in the shared candidate

 configuration

 3. Client 2 then issues a <commit> RPC

 In this situation, both client 1 and client 2 configurations will be

 committed by client 2. In a machine-to-machine environment client 2

 may not have been aware of the change to item A and, if they had been

 aware, may have decided not to proceed.

3.2. Current mitigation strategies

3.2.1. Locking the shared candidate configuration datastore

 In order to resolve unintended deployment of alternate users

 configuration changes as described above NETCONF provides the ability

 to lock a datastore in order to restrict other users from editing and

 committed changes.

 This does resolve the specific issue above, however, it introduces

 another issue. Whilst one of the clients holds a lock, no other

 client may edit the configuration. This will result in the client

 failing and having to retry. Whilst this may be a desirable

 consequence when two clients are editing the same section of the

 configuration, where they are editing different sections this

 behavior may hold up valid operational activity.

 Additionally, a lock placed on the shared candidate configuration

 must also lock the running configuration, otherwise changes committed

 directly into the running datastore may conflict.

 Finally, this locking mechanism isn’t available to RESTCONF clients.

Cumming & Wills Expires 22 April 2024 [Page 5]

Internet-Draft NETCONF Private Candidates October 2023

3.2.2. Always use the running configuration datastore

 The use of the running configuration datastore as the target for all

 configuration changes does not resolve any issues regarding blocking

 of system access in the case a lock is taken, nor does it provide a

 solution for multiple NETCONF and RESTCONF clients as each

 configuration change is applied immediately and the client has no

 knowledge of the current configuration at the point in time that they

 commenced the editing activity nor at the point they commit the

 activity.

3.2.3. Fine-grained locking

 [RFC5717] describes a partial lock mechanism that can be used on

 specific portions of the shared candidate datastore.

 Partial locking does not solve the issues of staging a set of

 configuration changes such that only those changes get committed in a

 commit operation, nor does it solve the issue of multiple clients

 editing the same parts of the configuration at the same time.

 Partial locking additionally requires that the client is aware of any

 interdependencies within the servers YANG models in order to lock all

 parts of the tree.

4. Private candidates solution

 The use of private candidates resolves the issues detailed earlier in

 this document.

 NETCONF sessions and RESTCONF requests are able to utilize the

 concept of private candidates in order to streamline network

 operations, particularly for machine-to-machine communication.

 Using this approach clients may improve their performance and reduce

 the likelihood of blocking other clients from continuing with valid

 operational activities.

 One or more private candidates may exist at any one time, however, a

 private candidate SHOULD:

 * Be accessible by one client only

 * Be visible by one client only

 Additionally, the choice of using a shared candidate configuration

 datastore or a private candidate configuration datastore MUST be for

 the entire duration of the NETCONF session.

Cumming & Wills Expires 22 April 2024 [Page 6]

Internet-Draft NETCONF Private Candidates October 2023

4.1. What is a private candidate

 A private candidate is defined earlier in the definitions and

 terminology section of this document.

4.2. When is a private candidate created

 A private candidate datastore is created when the first RPC that

 requires access to it is sent to the server. This could be, for

 example, an <edit-config>.

 When the private candidate is created a copy of the running

 configuration is made and stored in it. This can be considered the

 same as creating a branch in a source code repository.

 +----------------------------> private candidate

 /

 /

 +------+-------------------------------> running configuration

 ^

 Private candidate created

4.3. When is a private candidate destroyed

 A private candidate is valid for the duration of the NETCONF session.

 Issuing a <commit> operation will not close the private candidate but

 will issue an implicit <update> operation resyncing changes from the

 running configuration. More details on this later in this document.

 A NETCONF session that is operating using a private candidate will

 discard all uncommitted changes in that session’s private candidate

 and destroy the private candidate if the session is closed through a

 deliberate user action or disconnected for any other reason (such as

 a loss of network connectivity).

4.4. How to signal the use of private candidates

4.4.1. Server

 The server MUST signal its support for private candidates. The

 server does this by advertising a new :private-candidate capability:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 A server may also advertise the :candidate capability as defined in

 [RFC6241] if the shared candidate is also supported.

Cumming & Wills Expires 22 April 2024 [Page 7]

Internet-Draft NETCONF Private Candidates October 2023

 A non-NMDA capable NETCONF server that advertises the :private-

 candidate capability MUST also advertise the :candidate capability.

 If the server has not signalled the :private-candidate capability, or

 otherwise does not support private candidates, the server MUST:

 * Terminate the session when it receives the :private-candidate

 capability from a client in a <hello> message,

 * Return an <rpc-error> if a client attempts to interact with the

 NMDA private-candidate configuration datastore.

4.4.2. NETCONF client

 In order to utilise a private candidate configuration within a

 NETCONF session, the client must inform the server that it wishes to

 do this.

 Two approaches are available for a NETCONF client to signal that it

 wants to use a private candidate:

4.4.2.1. Client capability declaration

 When a NETCONF client connects with a server it sends a list of

 client capabilities including one of the :base NETCONF version

 capabilties.

 In order to enable private candidate mode for the duration of the

 NETCONF client session the NETCONF client sends the following

 capability:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 In order for the use of private candidates to be established using

 this approach both the NETCONF server and the NETCONF client MUST

 advertise this capability.

 When a server receives the client capability its mode of operation

 will be set to private candidate mode for the duration of the NETCONF

 session.

 All RPC requests that target the candidate configuration datastore

 will operate in exactly the same way as they would do when using the

 shared candidate configuration datastore, however, when the server

 receives a request to act upon the candidate configuration datastore

 it instead uses the session’s private candidate configuration

 datastore.

Cumming & Wills Expires 22 April 2024 [Page 8]

Internet-Draft NETCONF Private Candidates October 2023

 Using this method, the use of private candidates can be made

 available to NMDA and non-NMDA capable servers.

 No protocol extensions are required for the transitioning of

 candidates between the shared mode and the private mode and no

 extensions are required for any RPCs (including <lock>)

4.4.2.2. Private candidate datastore

 The private candidate configuration datastore is exposed as its own

 datastore similar to other NMDA [RFC8342] capable datastores. This

 datastore is called private-candidate.

 All NMDA operations that support candidate NMDA datastore SHOULD

 support the private-candidate datastore.

 Any non-NMDA aware NETCONF operations that take a source or target

 (destination) may be extended to accept the new datastore.

 The ability for the server to support private candidates is optional

 and SHOULD be signalled in NMDA supporting servers as a datastore in

 addition to the server capabilities described earlier in this

 document.

 To use this method the client is not required to send the :private-

 candidate capability.

 The first datastore referenced (either candidate or private-

 candidate) in any NETCONF operation will define which mode that

 NETCONF session will operate in for its duration. As an example,

 performing a <get-data> operation on the private-candidate datastore

 will switch the session into private candidate configuration mode and

 subsequent <edit-config> operations that reference the candidate

 configuration datastore MUST fail.

4.4.3. RESTCONF client

 RESTCONF doesn’t provide a mechanism for the client to advertise a

 capability. Therefore when a RESTCONF server advertises the

 :private-candidate capability, the decision of whether to use a

 private candidate depends on whether a datastore is explicitly

 referenced in the request using the RESTCONF extensions for NMDA

 [RFC8527].

Cumming & Wills Expires 22 April 2024 [Page 9]

Internet-Draft NETCONF Private Candidates October 2023

 When the server advertises the :private-candidate capability and the

 client does not explicitly reference a datastore in their request,

 all edits are made to a new private candidate, and the private

 candidate is committed. This is analagous to the behavior of

 RESTCONF when the :candidate capability is specified by the server.

 When the private-candidate datastore is explicitly referenced, edits

 are made to a new private candidate and the private candidate is

 committed.

4.5. Interaction between running and private-candidate(s)

 Multiple NETCONF operations may be performed on the private candidate

 in order to stage changes ready for a commit.

 In the simplest example, a session may create a private candidate

 configuration, perform multiple NETCONF operations (such as <edit-

 config>) on it and then perform a <commit> operation to merge the

 private candidate configuration into the running configuration in

 line with semantics in [RFC6241].

 commit

 +--------------------------+--------> private candidate

 / ^ ^ \

 / edit-config edit-config

 +---+-------------------------------+------> running configuration

 ^

 edit-config

 (Private candidate created)

 More complex scenarios need to be considered, when multiple private

 candidate sessions are working on their own configuration (branches)

 and they make commits into the running configuration.

 commit

 +---------------------+----------------> private candidate 1

 / \

 / edit-config

 +---+------------+-------------+--------------> running configuration

 edit-config \

 \

 +-------------------------> private candidate 2

 In this situation, if, how and when private candidate 2 is updated

 with the information that the running configuration has changed must

 be considered.

Cumming & Wills Expires 22 April 2024 [Page 10]

Internet-Draft NETCONF Private Candidates October 2023

 As described earlier, the client MUST be aware of changes to it’s

 private candidate configuration so it can be assured that it is only

 committing its own modifications. It should also be aware of any

 changes to the current running configuration.

 It is possible, during an update, for conflicts to occur and the

 detection and resolution of these is discussed later in this

 document.

 Two modes of operation are provided. Both modes may be supported by

 a system, however, only one mode MUST be supported per session.

 The server MUST advertise which mode is being used by the session by

 providing the mode parameter to the :private-candidate capability.

4.5.1. Static branch mode: Independent private candidate branch

 The private candidate is treated as a separate branch and changes

 made to the running configuration are not placed into the private

 candidate datastore except in one of the following situations:

 * The client requests that the private candidate be refreshed using

 a new <update> operation

 * <commit> is issued (which MUST automatically issue an <update>

 operation immediately prior to commiting the configuration)

 This approach is similar to the standard approach for source code

 management systems.

 In this model of operation it is possible for the private candidate

 configuration to become significantly out of sync with the running

 configuration should the private candidate be open for a long time

 without an operation being sent that causes a resync (rebase in

 source code control terminology).

 A <compare> operation may be performed against the initial creation

 point of the private candidate’s branch, against the last update

 point of the private candidate’s branch or against the running

 configuration.

 Conflict detection and resolution is discussed later in this

 document.

 The server signals this mode by setting the mode parameter to the

 :private-candidate capability to static-branch as follows:

Cumming & Wills Expires 22 April 2024 [Page 11]

Internet-Draft NETCONF Private Candidates October 2023

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?mode=static-branch

 This is the default mode. If no mode is specified in the :private-

 candidate capability this mode is used.

4.5.2. Continuous rebase mode: Continually updating private candidate

 The private candidate is treated as a separate branch, however, when

 any change is made to the running configuration the update operation

 will automatically be run on all open private candidate branches.

 This is equivalent to all currently open private candidate branches

 being rebased onto the running configuration every time a change is

 made to it by any session.

 In this model of operation the following should be considered:

 * Because the private candidate is automatically re-synchronized

 (rebased) with the running configuration each time a change is

 made in the running configuration, the NETCONF session is unaware

 that their private candidate configuration has changed unless they

 perform one of the get operations on the private candidate and

 analyse it for changes.

 * A <compare> operation may be performed against the initial

 creation point of the private candidate’s branch, against the last

 update point of the private candidate’s branch or against the

 running configuration. The output of the <compare> operation may

 be identical when comparing the current position of the private

 candidate with the last updated point or the running configuration

 depending on the resolution mode discussed below.

 * The output of the <compare> operation may not match the set of

 changes made to the session’s private candidate by the sessions

 owner but may also include changes in the running configuration

 made by other sessions.

 * A conflict may occur in the automatic update process pushing

 changes from the running configuration into the private candidate.

 For this reason restrictions are placed on what resolution modes

 are available for these automated updates.

 The server signals this mode by setting the mode parameter to the

 :private-candidate capability to continuous-rebase as follows:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?mode=continuous-rebase

Cumming & Wills Expires 22 April 2024 [Page 12]

Internet-Draft NETCONF Private Candidates October 2023

 Conflict detection and resolution is discussed later in this

 document.

4.6. Detecting and resolving conflicts

4.6.1. What is a conflict?

 A conflict is when the intent of the NETCONF client may have been

 different had it had a different starting point. In configuration

 terms, a conflict occurs when the same set of nodes in a

 configuration being altered by one user are changed between the start

 of the configuration preparation (the first <edit-config>/<edit-data>

 operation) and the conclusion of this configuration session

 (terminated by a <commit> operation).

 The situation where conflicts have the potential of occurring are

 when multiple configuration sessions are in progress and one session

 commits changes into the running configuration after the private

 candidate (branch) was created.

 When this happens a conflict occurs if the nodes modified in the

 running configuration are the same nodes that are modified in the

 private candidate configuration.

 Examples of conflicts include:

 * An interface has been deleted in the running configuration that

 existed when the private candidate was created. A change to a

 child node of this specific interface is made in the private

 candidate using the default merge operation would, instead of

 changing the child node, both recreate the interface and then set

 the child node.

 * A leaf has been modified in the running configuration from the

 value that it had when the private candidate was created. The

 private candidate configuration changes that leaf to another

 value.

4.6.2. Detecting and reporting conflicts

 A conflict can occur when an <update> operation is triggered. This

 can occur in a number of ways:

 * Manually triggered by the <update> NETCONF operation

 * Automatically triggered by the NETCONF server running an <update>

 operation upon a <commit> being issued by the client in the

 private candidate session.

Cumming & Wills Expires 22 April 2024 [Page 13]

Internet-Draft NETCONF Private Candidates October 2023

 * Automatically triggered by the NETCONF server running an <update>

 operation upon a <commit> being issued by any other configuration

 session (or user). This occurs in continual rebase mode only.

 When a conflict occurs the client MUST be given the opportunity to

 re-evaluate its intent based on the new information. The resolution

 of the conflict may be manual or automatic depending on the server

 and client decision (discussed later in this document).

 When a conflict occurs, a <commit> or <update> operation MUST fail.

 It MUST inform the client of the conflict and SHOULD detail the

 location of the conflict(s).

 In continuous rebase mode, it is theoretically possible for the

 automated <update> operation to fail. To mitigate against this (as

 the client cannot be provided this information), restrictions are

 placed on the resolution methods allowed for the automated update

 operation.

 The location of the conflict(s) should be reported as a list of

 xpaths and values.

4.6.3. Conflict resolution

 Conflict resolution defines which configuration elements are retained

 when a conflict is resolved; those from the running configuration or

 those from the private candidate configuration.

 When a conflict is detected in any client triggered activity, the

 client MUST be informed. The client then has a number of options

 available to resolve the conflict.

 It is worth noting that in the case of continuous rebase mode

 automated <update> operations may be performed against multiple

 private candidate configurations at once.

 The resolution method SHOULD be provided as an input to the <update>

 operation described later in this document. This input may be

 through a default selection, a specific input or a configuration

 element.

 The following configuration data is used below to describe the

 behavior of each resolution method:

Cumming & Wills Expires 22 April 2024 [Page 14]

Internet-Draft NETCONF Private Candidates October 2023

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to London<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link to Tokyo<description>

 </interface>

 </interfaces>

 </configure>

 The following workflow diagram is used and the outcome is the same

 regardless of whether static branch mode or continuous rebase mode is

 being used. For the purpose of the examples below assume the update

 operation is manually provided by a client in static branch mode.

 update commit

 +--------------------+---+------> private candidate 1

 / / \

 / edit-config /

 +---+--------+--------+--+--------+----> running configuration

 edit-config \ ^

 \ /

 +---+------------------> private candidate 2

 commit

 There are three defined resolution methods:

4.6.3.1. Ignore

 When using the ignore resolution method items in the running

 configuration that are not in conflict with the private candidate

 configuration are merged from the running configuration into the

 private candidate configuration. Nodes that are in conflict are

 ignored and not merged. The outcome of this is that the private

 candidate configuration reflects changes in the running that were not

 being worked on and those that are being worked on in the private

 candidate remain in the private candidate. Issuing a <commit>

 operation at this point will overwrite the running configuration with

 the conflicted items from the private candidate configuration.

 Example:

 Session 1 edits the configuration by submitting the following

Cumming & Wills Expires 22 April 2024 [Page 15]

Internet-Draft NETCONF Private Candidates October 2023

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

Cumming & Wills Expires 22 April 2024 [Page 16]

Internet-Draft NETCONF Private Candidates October 2023

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>ignore</resolution-mode>

 </update>

 </rpc>

 The un-conflicting changes are merged and the conflicting ones are

 ignored (and not merged from the running into private candidate 1).

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris<description>

 </interface>

 </interfaces>

 </configure>

4.6.3.2. Overwrite

 When using the overwrite resolution method items in the running

 configuration that are not in conflict with the private candidate

 configuration are merged from the running configuration into the

 private candidate configuration. Nodes that are in conflict are

 pushed from the running configuration into the private candidate

 configuration, overwriting any previous changes in the private

 candidate configuration. The outcome of this is that the private

 candidate configuration reflects the changes in the running

 configuration that were not being worked on as well as changing those

 being worked on in the private candidate to new values.

 Example:

 Session 1 edits the configuration by submitting the following

Cumming & Wills Expires 22 April 2024 [Page 17]

Internet-Draft NETCONF Private Candidates October 2023

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

Cumming & Wills Expires 22 April 2024 [Page 18]

Internet-Draft NETCONF Private Candidates October 2023

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>overwrite</resolution-mode>

 </update>

 </rpc>

 The un-conflicting changes are merged and the conflicting ones are

 pushed into the private candidate 1 overwriting the existing changes.

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris<description>

 </interface>

 </interfaces>

 </configure>

4.6.3.3. Revert-on-conflict

 When using the revert-on-conflict resolution method an update will

 fail to complete when any conflicting node is found. The session

 issuing the update will be informed of the failure.

 No changes, whether conflicting or un-conflicting are merged into the

 private candidate configuration.

 The owner of the private candidate session must then take deliberate

 and specific action to adjust the private candidate configuration to

 rectify the conflict. This may be by issuing further <edit-config>

 or <edit-data> operations, by issuing a <discard-changes> operation

 or by issuing an <update> operation with a different resolution

 method.

 This resolution method is the default resolution method as it

 provides for the highest level of visibility and control to ensure

 operational stability.

 This resolution method may not be selected by a system operating in

 continuous rebase mode when performing automatic <update> operations.

 Clients operating in continuous rebase mode may use this resolution

 mode in their <update> operation.

 Example:

Cumming & Wills Expires 22 April 2024 [Page 19]

Internet-Draft NETCONF Private Candidates October 2023

 Session 1 edits the configuration by submitting the following

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

Cumming & Wills Expires 22 April 2024 [Page 20]

Internet-Draft NETCONF Private Candidates October 2023

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>revert-on-conflict</resolution-mode>

 </update>

 </rpc>

 A conflict is detected, the update fails with an <rpc-error> and no

 merges/overwrite operations happen.

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link to Tokyo<description>

 </interface>

 </interfaces>

 </configure>

4.6.4. Default resolution mode and advertisement of this mode

 The default resolution mode is revert-on-conflict, however, a system

 MAY choose to select a different default resolution mode.

 The default resolution mode MAY be advertised in the :private-

 candidate capability by adding the resolution-mode parameter. If the

 system default is revert-on-conflict then this is optional.

 If a server does not support revert-on-conflict it MUST report the

 default resolution mode.

 If the system default is chosen to be anything other than revert-on-

 conflict then this MUST be signalled using the resolution-mode

 parameter, for example:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?mode=static-branch&default-resolution-mode=overwrite

Cumming & Wills Expires 22 April 2024 [Page 21]

Internet-Draft NETCONF Private Candidates October 2023

4.6.5. Supported resolution modes

 A server SHOULD support all three resolution modes, however, if the

 server does not support all three modes, the server MUST report the

 supported modes in the :private-candidate capability using the

 supported-resolution-modes, for example:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?mode=static-branch

 &supported-resolution-modes=revert-on-conflict,ignore

4.7. NETCONF operations

4.7.1. New NETCONF operations

4.7.1.1. <update>

 The <update> operation is provided to allow NETCONF clients (or

 servers) to trigger a rebase of the private candidate configuration

 against the running configuration.

 The <update> operation may be triggered manually by the client or

 automatically by the server.

 The <update> operation MUST be triggered on all private candidates by

 a <commit> operation being executed in any candidate configuration on

 the device if the device is operating in continuous rebase mode.

 The <update> operation MUST be implicitly triggered by a specific

 NETCONF session issuing a <commit> operation when using private

 candidates.

 The actual order of operations in the server MUST be to issue the

 implicit <update> operation first and then the <commit> operation.

 A <commit> operation that fails the implicit <update> operation

 SHOULD fail. The client is then required to make a specific decision

 to rectify the issue prior to committing. This may be to edit the

 private candidate configuration or to issue a manual <update>

 operation with a specific resolution mode selected.

4.7.1.1.1. <resolution-mode> parameter

 The <update> operation takes the optional <resolution-mode> parameter

 The resolution modes are described earlier in this document and the

 accepted inputs are:

Cumming & Wills Expires 22 April 2024 [Page 22]

Internet-Draft NETCONF Private Candidates October 2023

 * revert-on-conflict (default)

 * ignore

 * overwrite

4.7.2. Updated NETCONF operations

 Specific NETCONF operations altered by this document are listed in

 this section. Any notable behavior with existing unaltered NETCONF

 operations is noted in the appendix.

4.7.2.1. <edit-config>

 The <edit-config> operation is updated to accept private-candidate as

 valid input to the <target> field.

 The use of <edit-config> will create a private candidate

 configuration if one does not already exist for that NETCONF session.

 Sending an <edit-config> request to private-candidate after one has

 been sent to the shared candidate datastore in the same session will

 fail (and visa-versa).

 Multiple <edit-config> requests may be sent to the private-candidate

 datastore in a single session.

4.7.2.2. <lock> and <unlock>

 Performing a <lock> on the private-candidate datastore is a valid

 operation, although it is understood that the practical effect of

 this is a ’no op’ as only one session may edit the locked private

 candidate.

 If the client’s intention is that no other session may commit changes

 to the system then the client should issue a <lock> operation on the

 running candidate.

 Other NETCONF sessions are still able to create a new private-

 candidate configurations, make edits to them and perform operations

 on them, such as <update> or <discard-changes>.

 Performing an <unlock> on the private-candidate datastore is a valid

 operation

 Changes in the private-candidate datastore are not lost when the lock

 is released.

Cumming & Wills Expires 22 April 2024 [Page 23]

Internet-Draft NETCONF Private Candidates October 2023

4.7.2.3. <compare>

 Performing a <compare> [RFC9144] operation with the private-candidate

 datastore as either the <source> or <target> is a valid operation.

 If <compare> is performed prior to a private candidate configuration

 being created, one will be created at that point.

 The <compare> operation is extended by this document to allow the

 ability to compare the private-candidate datastore (at its current

 point in time) with the same private-candidate datastore at an

 earlier point in time or with another datastore.

4.7.2.3.1. <reference-point> parameter

 This document adds the optional <reference-point> node to the input

 of the <compare> operation that accepts the following values:

 * last-update

 * >creation-point

 Servers MAY support this functionality but are not required to by

 this document.

 The last-update selection of <reference-point> will provide an output

 comparing the current private-candidate configuration datastore with

 the same private-candidate datastore at the time it was last updated

 using the <update> NETCONF operation described in this document

 (whether automatically or manually triggered).

 The creation-point selection of <reference-point> will provide an

 output comparing the current private-candidate configuration

 datastore with the same private-candidate datastore at the time this

 private-candidate was initially created.

4.7.2.4. <get-config>

 The <get-config> operation is updated to accept private-candidate as

 valid input to the <source> field.

 The use of <get-config> will create a private candidate configuration

 if one does not already exist for that NETCONF session.

 Sending an <get-config> request to private-candidate after one has

 been sent to the shared candidate datastore in the same session will

 fail (and visa-versa).

Cumming & Wills Expires 22 April 2024 [Page 24]

Internet-Draft NETCONF Private Candidates October 2023

4.7.2.5. <get-data>

 The <get-data> operation accepts the private-candidate as a valid

 datastore.

 The use of <get-data> will create a private candidate configuration

 if one does not already exist for that NETCONF session.

 Sending an <get-data> request to private-candidate after one has been

 sent to the shared candidate datastore in the same session will fail

 (and visa-versa).

4.7.2.6. <copy-config>

 The <copy-config> operation is updated to accept private-candidate as

 a valid input to the <source> or <target> fields.

4.7.2.7. <delete-config>

 The <delete-config> operation is updated to accept private-candidate

 as a valid input to the <target> field.

4.7.2.8. <commit>

 The <commit> operation MUST trigger an implicit <update> operation.

 Nothing in this document alters the standard behavior of the

 <persist> or <persist-id> options and these SHOULD work when using

 the private-candidate configuration datastore.

5. IANA Considerations

 This document requests the registration the the following NETCONF

 capabilities:

 * urn:ietf:params:netconf:capability:private-candidate:1.0 (Version

 1.0)

6. Security Considerations

 This document should not affect the security of the Internet.

7. References

7.1. Normative References

Cumming & Wills Expires 22 April 2024 [Page 25]

Internet-Draft NETCONF Private Candidates October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "Network Management Datastore Architecture

 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC9144] Clemm, A., Qu, Y., Tantsura, J., and A. Bierman,

 "Comparison of Network Management Datastore Architecture

 (NMDA) Datastores", RFC 9144, DOI 10.17487/RFC9144,

 December 2021, <https://www.rfc-editor.org/info/rfc9144>.

 [RFC5717] Lengyel, B. and M. Bjorklund, "Partial Lock Remote

 Procedure Call (RPC) for NETCONF", RFC 5717,

 DOI 10.17487/RFC5717, December 2009,

 <https://www.rfc-editor.org/info/rfc5717>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8527] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "RESTCONF Extensions to Support the Network

 Management Datastore Architecture", RFC 8527,

 DOI 10.17487/RFC8527, March 2019,

 <https://www.rfc-editor.org/info/rfc8527>.

7.2. Informative References

Appendix A. Behavior with unaltered NETCONF operations

A.1. <get>

 The <get> operation does not accept a datastore value and therefore

 this document is not applicable to this operation. The use of the

 get operation will not create a private candidate configuration.

Cumming & Wills Expires 22 April 2024 [Page 26]

Internet-Draft NETCONF Private Candidates October 2023

Contributors

 The authors would like to thank Jan Lindblad, Lori-Ann McGrath, Jason

 Sterne and Rob Wilton for their contributions and reviews.

Authors’ Addresses

 James Cumming

 Nokia

 Email: james.cumming@nokia.com

 Robert Wills

 Cisco Systems

 Email: rowills@cisco.com

Cumming & Wills Expires 22 April 2024 [Page 27]

NETCONF J. Lindblad
Internet-Draft Cisco Systems
Intended status: Standards Track 10 October 2023
Expires: 12 April 2024

 Transaction ID Mechanism for NETCONF
 draft-ietf-netconf-transaction-id-02

Abstract

 NETCONF clients and servers often need to have a synchronized view of
 the server’s configuration data stores. The volume of configuration
 data in a server may be very large, while data store changes
 typically are small when observed at typical client resynchronization
 intervals.

 Rereading the entire data store and analyzing the response for
 changes is an inefficient mechanism for synchronization. This
 document specifies an extension to NETCONF that allows clients and
 servers to keep synchronized with a much smaller data exchange and
 without any need for servers to store information about the clients.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Network Configuration
 Working Group mailing list (netconf@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netconf/.

 Source for this draft and an issue tracker can be found at
 https://github.com/netconf-wg/transaction-id.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Lindblad Expires 12 April 2024 [Page 1]

Internet-Draft NCTID October 2023

 This Internet-Draft will expire on 12 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 4
 3. NETCONF Txid Extension 5
 3.1. Use Cases . 5
 3.2. General Txid Principles 6
 3.3. Initial Configuration Retrieval 7
 3.4. Subsequent Configuration Retrieval 9
 3.5. Candidate Datastore Configuration Retrieval 13
 3.6. Conditional Transactions 14
 3.6.1. Error response on Out of band change 16
 3.6.2. Txid History size consideration 17
 3.7. Candidate Datastore Transactions 18
 3.8. Dependencies within Transactions 20
 3.9. Other NETCONF Operations 23
 3.10. YANG-Push Subscriptions 24
 3.11. Comparing YANG Datastores 25
 4. Txid Mechanisms . 27
 4.1. The etag attribute txid mechanism 27
 4.2. The last-modified attribute txid mechanism 28
 4.3. Common features to both etag and last-modified txid
 mechanisms . 29
 4.3.1. Candidate Datastore 29
 4.3.2. Namespaces and Attribute Placement 30
 5. Txid Mechanism Examples 31
 5.1. Initial Configuration Response 31
 5.1.1. With etag . 31
 5.1.2. With last-modified 36
 5.2. Configuration Response Pruning 39
 5.3. Configuration Change 43
 5.4. Conditional Configuration Change 47

Lindblad Expires 12 April 2024 [Page 2]

Internet-Draft NCTID October 2023

 5.5. Reading from the Candidate Datastore 50
 5.6. Commit . 53
 5.7. YANG-Push . 53
 5.8. NMDA Compare . 55
 6. YANG Modules . 58
 6.1. Base module for txid in NETCONF 58
 6.2. Additional support for txid in YANG-Push 63
 6.3. Additional support for txid in NMDA Compare 65
 7. Security Considerations 67
 7.1. NACM Access Control 67
 7.1.1. Hash-based Txid Algorithms 68
 7.2. Unchanged Configuration 68
 8. IANA Considerations . 68
 9. Changes . 69
 9.1. Major changes in -02 since -01 70
 9.2. Major changes in -01 since -00 70
 9.3. Major changes in draft-ietf-netconf-transaction-id-00 since
 -02 . 71
 9.4. Major changes in -02 since -01 71
 9.5. Major changes in -01 since -00 72
 10. References . 73
 10.1. Normative References 73
 10.2. Informative References 74
 Acknowledgments . 74
 Author’s Address . 74

1. Introduction

 When a NETCONF client wishes to initiate a new configuration
 transaction with a NETCONF server, a frequently occurring use case is
 for the client to find out if the configuration has changed since the
 client last communicated with the server. Such changes could occur
 for example if another NETCONF client has made changes, or another
 system or operator made changes through other means than NETCONF.

 One way of detecting a change for a client would be to retrieve the
 entire configuration from the server, then compare the result with a
 previously stored copy at the client side. This approach is not
 popular with most NETCONF users, however, since it would often be
 very expensive in terms of communications and computation cost.

 Furthermore, even if the configuration is reported to be unchanged,
 that will not guarantee that the configuration remains unchanged when
 a client sends a subsequent change request, a few moments later.

 In order to simplify the task of tracking changes, a NETCONF server
 could implement a meta level transaction tag or timestamp for an
 entire configuration datastore or YANG subtree, and offer clients a

Lindblad Expires 12 April 2024 [Page 3]

Internet-Draft NCTID October 2023

 way to read and compare this tag or timestamp. If the tag or
 timestamp is unchanged, clients can avoid performing expensive
 operations. Such tags and timestamps are referred to as a
 transaction id (txid) in this document.

 Evidence of a transaction id feature being demanded by clients is
 that several server implementors have built proprietary and mutually
 incompatible mechanisms for obtaining a transaction id from a NETCONF
 server.

 RESTCONF, [RFC8040], defines a mechanism for detecting changes in
 configuration subtrees based on Entity-Tags (ETags) and Last-Modified
 txid values.

 In conjunction with this, RESTCONF provides a way to make
 configuration changes conditional on the server configuration being
 untouched by others. This mechanism leverages [RFC7232] "Hypertext
 Transfer Protocol (HTTP/1.1): Conditional Requests".

 This document defines similar functionality for NETCONF, [RFC6241],
 for config true data. It also ties this in with YANG-Push,
 [RFC8641], and "Comparison of Network Management Datastore
 Architecture (NMDA) Datastores", [RFC9144]. Config false data
 (operational data, state, statistics) is left out of scope from this
 document.

 This document does not change the RESTCONF protocol in any way, and
 is carefully written to allow implementations to share much of the
 code between NETCONF and RESTCONF. Note that the NETCONF txid
 mechanism described in this document uses XML attributes, but the
 RESTCONF mechanism relies on HTTP Headers instead, and use none of
 the XML attributes described in this document, nor JSON Metadata (see
 [RFC7952]).

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology defined in [RFC6241], [RFC7950],
 [RFC7952], [RFC8040], [RFC8641], and [RFC9144].

 In addition, this document defines the following terms:

 Versioned node A node in the instantiated YANG data tree for which

Lindblad Expires 12 April 2024 [Page 4]

Internet-Draft NCTID October 2023

 the server maintains a transaction id (txid) value.

 Transaction-id Mechanism A protocol implementation that fulfills the
 principles described in the first part, NETCONF Txid Extension
 (Section 3), of this document.

 Txid Abbreviation of Transaction-id

 C-txid Client side transaction-id, i.e. a txid value maintained or
 provided by a NETCONF client application.

 S-txid Server side transaction-id, i.e. a txid value maintained or
 sent by a NETCONF server.

 Txid History Temporally ordered list of txid values used by the
 server. Allows the server to determine if a given txid occurred
 more recently than another txid.

3. NETCONF Txid Extension

 This document describes a NETCONF extension which modifies the
 behavior of get-config, get-data, edit-config, edit-data, discard-
 changes, copy-config, delete-config and commit such that clients are
 able to conditionally retrieve and update the configuration in a
 NETCONF server.

 For servers implementing YANG-Push, an extension for conveying txid
 updates as part of subscription updates is also defined. A similar
 extension is also defined for servers implememnting "Comparison of
 NMDA Datastores".

 Several low level mechanisms could be defined to fulfill the
 requirements for efficient client-server txid synchronization. This
 document defines two such mechanisms, the etag txid mechanism and the
 last-modified txid mechanism. Additional mechanisms could be added
 in future. This document is therefore divided into a two parts; the
 first part discusses the txid mechanism in an abstract, protocol-
 neutral way. The second part, Txid Mechanisms (Section 4), then adds
 the protocol layer, and provides concrete encoding examples.

3.1. Use Cases

 The common use cases for txid mecahnisms are briefly discussed here.

 Initial configuration retrieval When the client initially connects

Lindblad Expires 12 April 2024 [Page 5]

Internet-Draft NCTID October 2023

 to a server, it may be interested to acquire a current view of
 (parts of) the server’s configuration. In order to be able to
 efficiently detect changes later, it may also be interested to
 store meta level txid information for subtrees of the
 configuration.

 Subsequent configuration retrieval When a client needs to reread
 (parts of) the server’s configuration, it may be interested to
 leverage the txid meta data it has stored by requesting the server
 to prune the response so that it does not repeat configuration
 data that the client is already aware of.

 Configuration update with txid return When a client issues a
 transaction towards a server, it may be interested to also learn
 the new txid meta data the server has stored for the updated parts
 of the configuration.

 Conditional configuration change When a client issues a transaction
 towards a server, it may specify txid meta data for the
 transaction in order to allow the server to verify that the client
 is up to date with any changes in the parts of the configuration
 that it is concerned with. If the txid meta data in the server is
 different than the client expected, the server rejects the
 transaction with a specific error message.

 Subscribe to configuration changes with txid return When a client
 subscribes to configuration change updates through YANG-Push, it
 may be interested to also learn the the updated txid meta data for
 the changed data trees.

3.2. General Txid Principles

 All servers implementing a txid mechanism MUST maintain a top level
 server side txid meta data value for each configuration datastore
 supported by the server. Server side txid is often abbreviated
 s-txid. Txid mechanism implementations MAY also maintain txid meta
 data values for nodes deeper in the YANG data tree. The nodes for
 which the server maintains txids are collectively referred to as the
 "Versioned Nodes".

 Server implementors MAY use the YANG extension statement ietf-
 netconf-txid:versioned-node to inform potential clients about which
 YANG nodes the server maintains a txid value for. Another way to
 discover (a partial) set of Versioned Nodes is for a client to
 request the current configuration with txids. The returned
 configuration will then have the Versioned Nodes decorated with their
 txid values.

Lindblad Expires 12 April 2024 [Page 6]

Internet-Draft NCTID October 2023

 Regardless of whether the server declares the Versioned Nodes or not,
 the set of Versioned Nodes in the server’s YANG tree MUST remain
 constant, except at system redefining events, such as software
 upgrades or entitlement installations or removals.

 The server returning txid values for the Versioned Nodes MUST ensure
 the txid values are changed every time there has been a configuration
 change at or below the node associated with the txid value. This
 means any update of a config true node will result in a new txid
 value for all ancestor Versioned Nodes, up to and including the
 datastore root itself.

 This also means a server MUST update the txid value for any nodes
 that change as a result of a configuration change, and their
 ancestors, regardless of source, even if the changed nodes are not
 explicitly part of the change payload. An example of this is
 dependent data under YANG [RFC7950] when- or choice-statements.

 The server MUST NOT change the txid value of a versioned node unless
 the node itself or a child node of that node has been changed. The
 server MUST NOT change any txid values due to changes in config false
 data, or any kind of metadata that the server may maintain for YANG
 data tree nodes.

3.3. Initial Configuration Retrieval

 When a NETCONF server receives a get-config or get-data request
 containing requests for txid values, it MUST, in the reply, return
 txid values for all Versioned Nodes below the point requested by the
 client.

 The exact encoding varies by mechanism, but all txid mechanisms would
 have a special "txid-request" txid value (e.g. "?") which is
 guaranteed to never be used as a normal txid value. Clients MAY use
 this special txid value associated with one or more nodes in the data
 tree to indicate to the server that they are interested in txid
 values below that point of the data tree.

Lindblad Expires 12 April 2024 [Page 7]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | get-config (txid: ?) |
 | acls |
 | |
 | <-- |
 | data (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 17 |
 | actions forwarding accept |
 | acl A2 (txid: 5152) |
 | aces (txid: 5152) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 5152) |
 | matches tcp source-port port 22 |
 | actions forwarding accept |
 v v

 Figure 1: Initial Configuration Retrieval. The client annotated
 the get-config request itself with the txid request value, which
 makes the server return all txid values in the entire datastore,
 that also fall within the requested subtree filter. The most
 recent change seems to have been an update to ace R8 and R9.

 In the call flow examples in this document we are using a 4-digit,
 monotonously increasing integer as txid. This is convenient and
 enhances readability of the examples, but does not necessarily
 reflect a typical implementation.

 In principle, txid values are opaque strings that uniquely identify a
 particular configuration state. Servers are expected to know which
 txid values it has used in the recent past, and in which order they
 were assigned to configuration change transactions. This information
 is known as the server’s Txid History.

Lindblad Expires 12 April 2024 [Page 8]

Internet-Draft NCTID October 2023

 How many historical txid values to track is up to each server
 implementor to decide, and a server MAY decide not to store any
 historical txid values at all. The more txid values in the server’s
 Txid History, the more efficient the client synchronization may be,
 as described in the coming sections.

 Some server implementors may decide to use a monotonically increasing
 integer as the txid value, or a timestamp. Doing so obviously makes
 it very easy for the server to determine the sequence of historical
 transaction ids.

 Some server implementors may decide to use a completely different
 txid value sequence, to the point that the sequence may appear
 completely random to outside observers. Clients MUST NOT generally
 assume that servers use a txid value scheme that reveals information
 about the temporal sequence of txid values.

3.4. Subsequent Configuration Retrieval

 Clients MAY request the server to return txid values in the response
 by adding one or more txid values received previously in get-config
 or get-data requests. Txid values sent by a client are often
 abbreviated c-txid.

 When a client sends in a c-txid value of a node that matches the
 server’s s-txid value for that Versioned Node, or matches a more
 recent s-txid value in the server’s Txid History, the server prunes
 (does not return) that subtree from the response. Since the client
 already knows the txid for this part of the data tree, or a txid that
 occurred more recently, it is obviosuly already up to date with that
 part of the configuration. Sending it again would be a waste of time
 and energy.

 The table below describes in detail how the client side (c-txid) and
 server side txid (s-txid) values are determined and compared when the
 server processes each data tree reply node from a get-config or get-
 data request.

 Servers MUST process each of the config true nodes as follows:

 +==========+===========================+============================+
 | Case | Condition | Behavior |
 +==========+===========================+============================+
1. NO	In its request, the	In this case, the server
CLIENT	client did not specify a	MUST return the current
TXID	c-txid value for the	node according to the
	current node, nor any	normal NETCONF
	ancestor of this node.	specifications. The

Lindblad Expires 12 April 2024 [Page 9]

Internet-Draft NCTID October 2023

		rules below do not apply
		to the current node. Any
		child nodes MUST also be
		evaluated with respect to
		these rules.
+----------+---------------------------+----------------------------+		
2.	The client did not	In this case, the current
CLIENT	specify a c-txid value	node MUST inherit the
ANCESTOR	for the current node, but	c-txid value of the
TXID	did specify a c-txid	closest ancestor node in
	value for one or more	the client’s request that
	ancestors of this node.	has a c-txid value.
		Processing of the current
		node continues according
		to the rules below.
+----------+---------------------------+----------------------------+		
3.	The node is not a	In this case, the current
SERVER	Versioned Node, i.e. the	node MUST inherit the
ANCESTOR	server does not maintain	server’s s-txid value of
TXID	a s-txid value for this	the closest ancestor that
	node.	is a Versioned Node (has
		a server side s-txid
		value). The datastore
		root is always a
		Versioned Node.
		Processing of the current
		node continues according
		to the rules below.
+----------+---------------------------+----------------------------+		
4.	The client specified	In this case the server
CLIENT	c-txid for the current	MUST return the node
TXID UP	node value is "up to	decorated with a special
TO DATE	date", i.e. it matches	"txid-match" txid value
	the server’s s-txid	(e.g. "=") to the
	value, or matches a	matching node, pruning
	s-txid value from the	any value and child
	server’s Txid History	nodes.
	that is more recent than	
	the server’s s-txid value	
	for this node.	
+----------+---------------------------+----------------------------+		
5.	The specified c-txid is	In this case the server
CLIENT	"outdated" or "unknown"	MUST return the current
TXID OUT	to the server, i.e. it	node according to the
OF DATE	does not match the	normal NETCONF
	server’s s-txid value for	specifications. If the
	this node, nor does the	current node is a
	client c-txid value match	Versioned Node, it MUST

Lindblad Expires 12 April 2024 [Page 10]

Internet-Draft NCTID October 2023

	any s-txid value in the	be decorated with the
	server’s Txid History	s-txid value. Any child
	that is more recent than	nodes MUST also be
	the server’s s-txid value	evaluated with respect to
	for this node.	these rules.
 +----------+---------------------------+----------------------------+

 Table 1: The Txid rules for response pruning.

 For list elements, pruning child nodes means that top-level key nodes
 MUST be included in the response, and other child nodes MUST NOT be
 included. For containers, child nodes MUST NOT be included.

 Here follows a couple of examples of how the rules above are applied.
 See the example above (Figure 1) for the most recent server
 configuration state that the client is aware of, before this happens:

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | acl A2 (txid: 5152) |
 | aces (txid: 5152) |
 | |
 | <-- |
 | data |
 | acls (txid: =) |
 v v

 Figure 2: Response Pruning. Client sends get-config request with
 known txid values. Server prunes response where the c-txid
 matches expectations. In this case, the server had no changes,
 and pruned the response at the earliest point offered by the
 client.

 In this case, the server’s txid-based pruning saved a substantial
 amount of information that is already known by the client to be sent
 to and processed by the client.

 In the following example someone has made a change to the
 configuration on the server. This server has chosen to implement a
 Txid History with up to 5 entries. The 5 most recently used s-txid
 values on this example server are currently: 4711, 5152, 5550, 6614,
 7770 (most recent). Then a client sends this request:

Lindblad Expires 12 April 2024 [Page 11]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | acl A2 (txid: 5152) |
 | |
 | <-- |
 | data |
 | acls (txid: 6614) |
 | acl A1 (txid: =) |
 | acl A2 (txid: 6614) |
 | aces (txid: 6614) |
 | ace R7 (txid: =) |
 | ace R8 (txid: =) |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 3: Out of band change detected. Client sends get-config
 request with known txid values. Server provides updates only
 where changes have happened.

 In the example above, the server returns the acls container because
 the client supplied c-txid value (5152) differs from the s-txid value
 held by the server (6614), and 5152 is less recent in the server’s
 Txid History than 6614. The client is apparently unaware of the
 latest config developments in this part of the server config tree.

 The server prunes list entry acl A1 is because it has the same s-txid
 value as the c-txid supplied by the client (4711). The server
 returns the list entry acl A2 because 5152 (specified by the client)
 is less recent than 6614 (held by the server).

 The container aces under acl A2 is returned because 5152 is less
 recent than 6614. The server prunes ace R7 because the c-txid for
 this node is 5152 (from acl A2), and 5152 is more recent than the
 closest ancestor Versioned Node (with txid 4711).

 The server also prunes acl R8 because the server and client txids
 exactly match (5152). Finally, acl R9 is returned because of its
 less recent c-txid value given by the client (5152, on the closest
 ancestor acl A2) than the s-txid held on the server (6614).

Lindblad Expires 12 April 2024 [Page 12]

Internet-Draft NCTID October 2023

 In the next example, the client specifies the c-txid for a node that
 the server does not maintain a s-txid for, i.e. it’s not a Versioned
 Node.

 Client Server
 | |
 | --> |
 | get-config |
 | acls |
 | acls A2 |
 | aces |
 | ace R7 |
 | matches |
 | ipv4 |
 | dscp (txid: 4711) |
 | |
 | <-- |
 | data |
 | acls |
 | acl A2 |
 | aces |
 | ace R7 |
 | matches |
 | ipv4 |
 | dscp (txid: =) |
 v v

 Figure 4: Versioned Nodes. Server lookup of dscp txid gives
 4711, as closest ancestor is ace R7 with txid 4711. Since the
 server’s and client’s txid match, the etag value is ’=’, and the
 leaf value is pruned.

 Here, the server looks up the closest ancestor node that is a
 Versioned Node. This particular server has chosen to keep a s-txid
 for the list entry ace R7, but not for any of its children. Thus the
 server finds the server side s-txid value to be 4711 (from ace R7),
 which matches the client’s c-txid value of 4711.

 Servers MUST NOT ever use the special txid values, txid-match, txid-
 request, txid-unknown (e.g. "=", "?", "!") as actual txid values.

3.5. Candidate Datastore Configuration Retrieval

 When a client retrieves the configuration from the (or a) candidate
 datastore, some of the configuration nodes may hold the same data as
 the corresponding node in the running datastore. In such cases, the
 server MUST return the same s-txid value for nodes in the candidate
 datastore as in the running datastore.

Lindblad Expires 12 April 2024 [Page 13]

Internet-Draft NCTID October 2023

 If a node in the candidate datastore holds different data than in the
 running datastore, the server has a choice of what to return.

 * The server MAY return a txid-unknown value (e.g. "!"). This may
 be convenient in servers that do not know a priori what txids will
 be used in a future, possible commit of the canidate.

 * If the txid-unknown value is not returned, the server MUST return
 the s-txid value the node will have after commit, assuming the
 client makes no further changes of the candidate datastore. If a
 client makes further changes in the candidate datastore, the
 s-txid value MAY change.

 See the example in Candidate Datastore Transactions (Section 3.7).

3.6. Conditional Transactions

 Conditional transactions are useful when a client is interested to
 make a configuration change, being sure that relevant parts of the
 server configuration have not changed since the client last inspected
 it.

 By supplying the latest c-txid values known to the client in its
 change requests (edit-config etc.), it can request the server to
 reject the transaction in case any relevant changes have occurred at
 the server that the client is not yet aware of.

 This allows a client to reliably compute and send configuration
 changes to a server without either acquiring a global datastore lock
 for a potentially extended period of time, or risk that a change from
 another client disrupts the intent in the time window between a read
 (get-config etc.) and write (edit-config etc.) operation.

 Clients that are also interested to know the s-txid assigned to the
 modified Versioned Nodes in the model immediately in the response
 could set a flag in the rpc message to request the server to return
 the new s-txid with the ok message.

Lindblad Expires 12 April 2024 [Page 14]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok (txid: 7688) |
 v v

 Figure 5: Conditional transaction towards the Running datastore
 successfully executed. As all the txid values specified by the
 client matched those on the server, the transaction was
 successfully executed.

 After the above edit-config, the client might issues a get-config to
 observe the change. It would look like this:

Lindblad Expires 12 April 2024 [Page 15]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: ?) |
 | |
 | <-- |
 | data |
 | acls (txid: 7688) |
 | acl A1 (txid: 7688) |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 6614) |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 6: The txids are updated on all Versioned Nodes that were
 modified themselves or have a child node that was modified.

 When a client sends in a c-txid value of a node, the server MUST
 consider it a match if the server’s s-txid value is identical to the
 client, or if the server’s value is found earlier in the server’s
 Txid History than the value supplied by the client.

3.6.1. Error response on Out of band change

 If the server rejects the transaction because one or more of the
 configuration s-txid value(s) differs from the client’s expectation,
 the server MUST return at least one rpc-error with the following
 values:

 error-tag: operation-failed
 error-type: protocol
 error-severity: error

Lindblad Expires 12 April 2024 [Page 16]

Internet-Draft NCTID October 2023

 Additionally, the error-info tag MUST contain an sx:structure
 containing relevant details about one of the mismatching txids. A
 server MAY send multiple rpc-errors when multiple txid mismatches are
 detected.

 Client Server
 | |
 | --> |
 | edit-config |
 | config |
 | acls |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 dscp 20 |
 | actions forwarding accept |
 | |
 | <-- |
 | rpc-error |
 | error-tag operation-failed |
 | error-type protocol |
 | error-severity error |
 | error-info |
 | mismatch-path /acls/acl[A1] |
 | mismatch-etag-value 6912 |
 v v

 Figure 7: Conditional transaction that fails a txid check. The
 client wishes to ensure there has been no changes to the
 particular acl entry it edits, and therefore sends the c-txid it
 knows for this part of the configuration. Since the s-txid has
 changed (out of band), the server rejects the configuration
 change request and reports an error with details about where the
 mismatch was detected.

3.6.2. Txid History size consideration

 It may be tempting for a client implementor to send only the top
 level c-txid value for the tree being edited. In most cases, that
 would certainly work just fine. This is a way for the client to
 request the server to go ahead with the change as long as there has
 not been any changes more recent than the client provided c-txid.

 Here the client is sending the same change as in the example above
 (Figure 5), but with only one top level c-txid value.

Lindblad Expires 12 April 2024 [Page 17]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config (txid: 5152) |
 | acls |
 | acl A1 |
 | aces |
 | ace R1 |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok (txid: 7688) |
 v v

 Figure 8: Conditional transaction towards the Running datastore
 successfully executed. As all the c-txid values specified by the
 client were the same or more recent in the server’s Txid History,
 so the transaction was successfully executed.

 This approach works well because the top level value is inherited
 down in the child nodes and the server finds this value to either
 match exactly or be a more recent s-txid value in the server’s Txid
 History.

 The only caveat is that by relying on the server’s Txid History being
 long enough, the change could be rejected if the top level c-txid has
 fallen out of the server’s Txid History. Some servers may have a
 Txid History size of zero. A client specifying a single top-level
 c-txid value towards such a server would not be able to get the
 transaction accepted.

3.7. Candidate Datastore Transactions

 When working with the (or a) Candidate datastore, the txid validation
 happens at commit time, rather than at individual edit-config or
 edit-data operations. Clients add their c-txid attributes to the
 configuration payload the same way. In case a client specifies
 different c-txid values for the same element in successive edit-
 config or edit-data operations, the c-txid value specified last MUST
 be used by the server at commit time.

Lindblad Expires 12 April 2024 [Page 18]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | edit-config (operation: merge) |
 | config (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | type ipv4 |
 | |
 | <-- |
 | ok |
 | |
 | --> |
 | edit-config (operation: merge) |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok |
 | |
 | --> |
 | get-config |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: ?) |
 | |
 | <-- |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: 7688 or !) |
 | ace R1 (txid: 7688 or !) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | ace R2 (txid: 2219) |
 | matches ipv4 dscp 21 |
 | actions forwarding accept |
 | |
 | --> |
 | commit (request new txid in response) |
 | |
 | <-- |

Lindblad Expires 12 April 2024 [Page 19]

Internet-Draft NCTID October 2023

 | ok (txid: 7688) |
 v v

 Figure 9: Conditional transaction towards the Candidate datastore
 successfully executed. As all the c-txid values specified by the
 client matched those on the server at the time of the commit, the
 transaction was successfully executed. If a client issues a get-
 config towards the candidate datastore, the server may choose to
 return the special txid-unknown value (e.g. "!") or the s-txid
 value that would be used if the candidate was committed without
 further changes (when that s-txid value is known in advance by
 the server).

3.8. Dependencies within Transactions

 YANG modules that contain when-statements referencing remote parts of
 the model will cause the s-txid to change even in parts of the data
 tree that were not modified directly.

 Let’s say there is an energy-example.yang module that defines a
 mechanism for clients to request the server to measure the amount of
 energy that is consumed by a given access control rule. The energy-
 example module augments the access control module as follows:

 module energy-example {
 ...

 container energy {
 leaf metering-enabled {
 type boolean;
 default false;
 }
 }

 augment /acl:acls/acl:acl {
 when /energy-example:energy/energy-example:metering-enabled;
 leaf energy-tracing {
 type boolean;
 default false;
 }
 leaf energy-consumption {
 config false;
 type uint64;
 units J;
 }
 }
 }

Lindblad Expires 12 April 2024 [Page 20]

Internet-Draft NCTID October 2023

 This means there is a system wide switch leaf metering-enabled in
 energy-example which disables all energy measurements in the system
 when set to false, and that there is a boolean leaf energy-tracing
 that controls whether energy measurement is happening for each acl
 rule individually.

 In this example, we have an initial configuration like this:

 Client Server
 | |
 | --> |
 | get-config |
 | energy (txid: ?) |
 | acls (txid: ?) |
 | |
 | <-- |
 | data (txid: 7688) |
 | energy metering-enabled true (txid: 4711) |
 | acls (txid: 7688) |
 | acl A1 (txid: 7688) |
 | energy-tracing false |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 6614) |
 | energy-tracing true |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 10: Initial configuration for the energy example. Note
 the energy metering-enabled leaf at the top and energy-tracing
 leafs under each acl.

 At this point, a client updates metering-enabled to false. This
 causes the when-expression on energy-tracing to turn false, removing
 the leaf entirely. This counts as a configuration change, and the
 s-txid MUST be updated appropriately.

Lindblad Expires 12 April 2024 [Page 21]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config |
 | energy metering-enabled false |
 | |
 | <-- |
 | ok (txid: 9118) |
 v v

 Figure 11: Transaction changing a single leaf. This leaf is the
 target of a when-statement, however, which means other leafs
 elsewhere may be indirectly modified by this change. Such
 indirect changes will also result in s-txid changes.

 After the transaction above, the new configuration state has the
 energy-tracing leafs removed. Every such removal or (re)introduction
 of a node counts as a configuration change from a txid perspective,
 regardless of whether the change has any net configuration change
 effect in the server.

Lindblad Expires 12 April 2024 [Page 22]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | get-config |
 | energy (txid: ?) |
 | acls (txid: ?) |
 | |
 | <-- |
 | data (txid: 9118) |
 | energy metering-enabled false (txid: 9118) |
 | acls (txid: 9118) |
 | acl A1 (txid: 9118) |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 9118) |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 12: The txid for the energy subtree has changed since that
 was the target of the edit-config. The txids of the ACLs have
 also changed since the energy-tracing leafs are now removed by
 the now false when- expression. Both acl A1 and acl A2 have
 their txids updated, even though energy-tracing was already false
 for acl A1.

3.9. Other NETCONF Operations

 discard-changes The discard-changes operation resets the candidate
 datastore to the contents of the running datastore. The server
 MUST ensure the txid values in the candidate datastore get the
 same txid values as in the running datastore when this operation
 runs.

 copy-config The copy-config operation can be used to copy contents
 between datastores. The server MUST ensure the txid values are
 retained and changed as if the data being copied had been sent in
 through an edit-config operation.

Lindblad Expires 12 April 2024 [Page 23]

Internet-Draft NCTID October 2023

 delete-config The server MUST ensure the datastore txid value is
 changed, unless it was already empty.

 commit At commit, with regards to the txid values, the server MUST
 treat the contents of the candidate datastore as if any txid value
 provided by the client when updating the candidate was provided in
 a single edit-config towards the running datastore. If the
 transaction is rejected due to txid value mismatch, an rpc-error
 as described in section Conditional Transactions (Section 3.6)
 MUST be sent.

3.10. YANG-Push Subscriptions

 A client issuing a YANG-Push establish-subscription or modify-
 subscription request towards a server that supports ietf-netconf-
 txid-yang-push.yang MAY request that the server provides updated txid
 values in YANG-Push on-change subscription updates.

 This functionality pertains only to on-change updates. This RPC may
 also be invoked over RESTCONF or other protocols, and might therefore
 be encoded in JSON.

 To request txid values (e.g. etag), the client adds a flag in the
 request (e.g. with-etag). The server then returns the txid (e.g.
 etag) value in the yang-patch payload (e.g. as etag-value).

Lindblad Expires 12 April 2024 [Page 24]

Internet-Draft NCTID October 2023

 Client Server
 | |
 | --> |
 | rpc |
 | establish-subscription |
 | datastore running |
 | datastore-xpath-filter /acls |
 | on-change |
 | with-etag true |
 | |
 | <-- |
 | ok |
 | |
 | <-- |
 | notification |
 | eventTime 2022-04-04T06:00:24.16Z |
 | push-change-update |
 | id 89 |
 | datastore-changes |
 | yang-patch |
 | patch-id 0 |
 | edit |
 | edit-id edit1 |
 | operation delete |
 | target /acls/acl[A1] |
 | edit |
 | edit-id edit2 |
 | operation merge |
 | target /acls/acl[A2]/ace[R7] |
 | value |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | etag-value 8008 |
 | |
 v v

 Figure 13: A client requests a YANG-Push subscription for a given
 path with txid value included. When the server delivers a push-
 change-update notification, the txid value pertaining to the
 entire patch is included.

3.11. Comparing YANG Datastores

 A client issuing an NMDA Datastore compare request towards a server
 that supports ietf-netconf-txid-nmda-compare.yang MAY request that
 the server provides updated txid values in the compare reply.
 Besides NETCONF, this RPC may also be invoked over RESTCONF or other
 protocols, and might therefore be encoded in JSON.

Lindblad Expires 12 April 2024 [Page 25]

Internet-Draft NCTID October 2023

 To request txid values (e.g. etag), the client adds a flag in the
 request (e.g. with-etag). The server then returns the txid (e.g.
 etag) value in the yang-patch payload (e.g. as etag-value).

 The txid value returned by the server MUST be the txid value
 pertaining to the target node in the source or target datastores that
 is the most recent. If one of the datastores being compared is not a
 configuration datastore, the txid in the configuration datastore MUST
 be used. If none of the datastores being compared are a
 configuration datastore, then txid values MUST NOT be returned at
 all.

 The txid to return is the one that pertains to the target node, or in
 the case of delete, the closest surviving ancestor of the target
 node.

 Client Server
 | |
 | --> |
 | rpc |
 | compare |
 | source ds:running |
 | target ds:operational |
 | with-etag true |
 | |
 | <-- |
 | differences |
 | yang-patch |
 | patch-id 0 |
 | edit |
 | edit-id edit1 |
 | operation delete |
 | target /acls/acl[A1] |
 | etag-value 8008 |
 | edit |
 | edit-id edit2 |
 | operation merge |
 | target /acls/acl[A2]/ace[R7] |
 | value |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | etag-value 8008 |
 | |
 v v

 Figure 14: A client requests a NMDA Datastore compare for a given
 path with txid values included. When the server delivers the
 reply, the txid is included for each edit.

Lindblad Expires 12 April 2024 [Page 26]

Internet-Draft NCTID October 2023

4. Txid Mechanisms

 This document defines two txid mechanisms:

 * The etag attribute txid mechanism

 * The last-modified attribute txid mechanism

 Servers implementing this specification MUST support the etag
 attribute txid mechanism and MAY support the last-modified attribute
 txid mechanism.

 Section NETCONF Txid Extension (Section 3) describes the logic that
 governs all txid mechanisms. This section describes the mapping from
 the generic logic to specific mechanism and encoding.

 If a client uses more than one txid mechanism, such as both etag and
 last-modified in a particular message to a server, or patricular
 commit, the result is undefined.

4.1. The etag attribute txid mechanism

 The etag txid mechanism described in this section is centered around
 a meta data XML attribute called "etag". The etag attribute is
 defined in the namespace "urn:ietf:params:xml:ns:netconf:txid:1.0".
 The etag attribute is added to XML elements in the NETCONF payload in
 order to indicate the txid value for the YANG node represented by the
 element.

 NETCONF servers that support this extension MUST announce the
 capability "urn:ietf:params:netconf:capability:txid:etag:1.0".

 The etag attribute values are opaque UTF-8 strings chosen freely,
 except that the etag string must not contain space, backslash or
 double quotes. The point of this restriction is to make it easy to
 reuse implementations that adhere to section 2.3.1 in [RFC7232]. The
 probability SHOULD be made very low that an etag value that has been
 used historically by a server is used again by that server if the
 configuration is different.

 It is RECOMMENDED that the same etag txid values are used across all
 management interfaces (i.e. NETCONF, RESTCONF and any other the
 server might implement), if it implements more than one.

 The detailed rules for when to update the etag value are described in
 section General Txid Principles (Section 3.2). These rules are
 chosen to be consistent with the ETag mechanism in RESTCONF,
 [RFC8040], specifically sections 3.4.1.2, 3.4.1.3 and 3.5.2.

Lindblad Expires 12 April 2024 [Page 27]

Internet-Draft NCTID October 2023

4.2. The last-modified attribute txid mechanism

 The last-modified txid mechanism described in this section is
 centered around a meta data XML attribute called "last-modified".
 The last-modified attribute is defined in the namespace
 "urn:ietf:params:xml:ns:netconf:txid:1.0". The last-modified
 attribute is added to XML elements in the NETCONF payload in order to
 indicate the txid value for the YANG node represented by the element.

 NETCONF servers that support this extension MUST announce the feature
 last-modified defined in ietf-netconf-txid.yang.

 The last-modified attribute values are yang:date-and-time values as
 defined in ietf-yang-types.yang, [RFC6991].

 "2022-04-01T12:34:56.123456Z" is an example of what this time stamp
 format looks like. It is RECOMMENDED that the time stamps provided
 by the server closely match the real world clock. Servers MUST
 ensure the timestamps provided are monotonously increasing for as
 long as the server’s operation is maintained.

 It is RECOMMENDED that server implementors choose the number of
 digits of precision used for the fractional second timestamps high
 enough so that there is no risk that multiple transactions on the
 server would get the same timestamp.

 It is RECOMMENDED that the same last-modified txid values are used
 across all management interfaces (i.e. NETCONF and any other the
 server might implement), except RESTCONF.

 RESTCONF, as defined in [RFC8040], is using a different format for
 the time stamps which is limited to one second resolution. Server
 implementors that support the Last-Modified txid mechanism over both
 RESTCONF and other management protocols are RECOMMENDED to use Last-
 Modified timestamps that match the point in time referenced over
 RESTCONF, with the fractional seconds part added.

 The detailed rules for when to update the last-modified value are
 described in section General Txid Principles (Section 3.2). These
 rules are chosen to be consistent with the Last-Modified mechanism in
 RESTCONF, [RFC8040], specifically sections 3.4.1.1, 3.4.1.3 and
 3.5.1.

Lindblad Expires 12 April 2024 [Page 28]

Internet-Draft NCTID October 2023

4.3. Common features to both etag and last-modified txid mechanisms

 Clients MAY add etag or last-modified attributes to zero or more
 individual elements in the get-config or get-data filter, in which
 case they pertain to the subtree(s) rooted at the element(s) with the
 attributes.

 Clients MAY also add such attributes directly to the get-config or
 get-data tags (e.g. if there is no filter), in which case it pertains
 to the txid value of the datastore root.

 Clients might wish to send a txid value that is guaranteed to never
 match a server constructed txid. With both the etag and last-
 modified txid mechanisms, such a txid-request value is "?".

 Clients MAY add etag or last-modified attributes to the payload of
 edit-config or edit-data requests, in which case they indicate the
 client’s txid value of that element.

 Clients MAY request servers that also implement YANG-Push to return
 configuration change subsription updates with etag or last-modified
 txid attributes. The client requests this service by adding a with-
 etag or with-last-modified flag with the value ’true’ to the
 subscription request or yang-push configuration. The server MUST
 then return such txids on the YANG Patch edit tag and to the child
 elements of the value tag. The txid attribute on the edit tag
 reflects the txid associated with the changes encoded in this edit
 section, as well as parent nodes. Later edit sections in the same
 push-update or push-change-update may still supercede the txid value
 for some or all of the nodes in the current edit section.

 Servers returning txid values in get-config, edit-config, get-data,
 edit-data and commit operations MUST do so by adding etag and/or
 last-modified txid attributes to the data and ok tags. When servers
 prune output due to a matching txid value, the server MUST add a
 txid-match attribute to the pruned element, and MUST set the
 attribute value to "=", and MUST NOT send any element value.

 Servers returning a txid mismatch error MUST return an rpc-error as
 defined in section Conditional Transactions (Section 3.6) with an
 error-info tag containing a txid-value-mismatch-error-info structure.

4.3.1. Candidate Datastore

 When servers return txid values in get-config and get-data operations
 towards the candidate datastore, the txid values returned MUST adhere
 to the following rules:

Lindblad Expires 12 April 2024 [Page 29]

Internet-Draft NCTID October 2023

 * If the versioned node holds the same data as in the running
 datastore, the same txid value as the versioned node in running
 MUST be used.

 * If the versioned node is different in the candidate store than in
 the running datastore, the server has a choice of what to return.
 The server MAY return the special "txid-unknown" value "!". If
 the txid-unknown value is not returned, the server MUST return the
 txid value the versioned node will have if the client decides to
 commit the candidate datastore without further updates.

4.3.2. Namespaces and Attribute Placement

 The txid attributes are valid on the following NETCONF tags, where
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0",
 xmlns:ncds="urn:ietf:params:xml:ns:yang:ietf-netconf-nmda",
 xmlns:sn="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications",
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-patch" and
 xmlns:ypatch="urn:ietf:params:xml:ns:yang:ietf-yang-patch":

 In client messages sent to a server:

 * /nc:rpc/nc:get-config

 * /nc:rpc/nc:get-config/nc:filter//*

 * /nc:rpc/ncds:get-data

 * /nc:rpc/ncds:get-data/ncds:subtree-filter//*

 * /nc:rpc/ncds:get-data/ncds:xpath-filter//*

 * /nc:rpc/nc:edit-config/nc:config

 * /nc:rpc/nc:edit-config/nc:config//*

 * /nc:rpc/ncds:edit-data/ncds:config

 * /nc:rpc/ncds:edit-data/ncds:config//*

 In server messages sent to a client:

 * /nc:rpc-reply/nc:data

 * /nc:rpc-reply/nc:data//*

 * /nc:rpc-reply/ncds:data

Lindblad Expires 12 April 2024 [Page 30]

Internet-Draft NCTID October 2023

 * /nc:rpc-reply/ncds:data//*

 * /nc:rpc-reply/nc:ok

 * /yp:push-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit

 * /yp:push-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit/ypatch:value//*

 * /yp:push-change-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit

 * /yp:push-change-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit/ypatch:value//*

5. Txid Mechanism Examples

5.1. Initial Configuration Response

5.1.1. With etag

 NOTE: In the etag examples below, we have chosen to use a txid value
 consisting of "nc" followed by a monotonously increasing integer.
 This is convenient for the reader trying to make sense of the
 examples, but is not an implementation requirement. An etag would
 often be implemented as a "random" string of characters.

 To retrieve etag attributes across the entire NETCONF server
 configuration, a client might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config txid:etag="?"/>
 </rpc>

 The server’s reply might then be:

 <rpc-reply message-id="1"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data txid:etag="nc5152">
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">

Lindblad Expires 12 April 2024 [Page 31]

Internet-Draft NCTID October 2023

 <ace txid:etag="nc4711">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>

Lindblad Expires 12 April 2024 [Page 32]

Internet-Draft NCTID October 2023

 </ace>
 <ace txid:etag="nc5152">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"
 txid:etag="nc3072">
 <groups txid:etag="nc3072">
 <group txid:etag="nc3072">
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>
 </rpc>

 To retrieve etag attributes for a specific ACL using an xpath filter,
 a client might send:

Lindblad Expires 12 April 2024 [Page 33]

Internet-Draft NCTID October 2023

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="xpath"
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 select="/acl:acls/acl:acl[acl:name=’A1’]"
 txid:etag="?"/>
 </get-config>
 </rpc>

 To retrieve etag attributes for "acls", but not for "nacm", a client
 might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="3"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="?"/>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 </filter>
 </get-config>
 </rpc>

 If the server considers "acls", "acl", "aces" and "acl" to be
 Versioned Nodes, the server’s response to the request above might
 look like:

 <rpc-reply message-id="3"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <name>R1</name>

Lindblad Expires 12 April 2024 [Page 34]

Internet-Draft NCTID October 2023

 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">

Lindblad Expires 12 April 2024 [Page 35]

Internet-Draft NCTID October 2023

 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 <groups>
 <group>
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>
 </rpc>

5.1.2. With last-modified

 To retrieve last-modified attributes for "acls", but not for "nacm",
 a client might send:

Lindblad Expires 12 April 2024 [Page 36]

Internet-Draft NCTID October 2023

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="4"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:last-modified="?"/>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 </filter>
 </get-config>
 </rpc>

 If the server considers "acls", "acl", "aces" and "acl" to be
 Versioned Nodes, the server’s response to the request above might
 look like:

 <rpc-reply message-id="4"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:last-modified="2022-04-01T12:34:56.789012Z">
 <acl txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>A1</name>
 <aces txid:last-modified="2022-03-20T16:20:11.333444Z">
 <ace txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>A2</name>
 <aces txid:last-modified="2022-04-01T12:34:56.789012Z">

Lindblad Expires 12 April 2024 [Page 37]

Internet-Draft NCTID October 2023

 <ace txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>

Lindblad Expires 12 April 2024 [Page 38]

Internet-Draft NCTID October 2023

 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 <groups>
 <group>
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>
 </rpc>

5.2. Configuration Response Pruning

 A NETCONF client that already knows some txid values MAY request that
 the configuration retrieval request is pruned with respect to the
 client’s prior knowledge.

 To retrieve only changes for "acls" that do not have the last known
 etag txid value, a client might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="6"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711"/>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152"/>
 </acl>
 </filter>
 </get-config>
 </rpc>

 Assuming the NETCONF server configuration is the same as in the
 previous rpc-reply example, the server’s response to request above
 might look like:

Lindblad Expires 12 April 2024 [Page 39]

Internet-Draft NCTID October 2023

 <rpc-reply message-id="6"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="="/>
 </data>
 </rpc>

 Or, if a configuration change has taken place under /acls since the
 client was last updated, the server’s response may look like:

 <rpc-reply message-id="6"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc6614">
 <acl txid:etag="=">
 <name>A1</name>
 </acl>
 <acl txid:etag="nc6614">
 <name>A2</name>
 <aces txid:etag="nc6614">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <ipv4>
 <source-port>
 <port>22</port>
 </source-port>
 </ipv4>

Lindblad Expires 12 April 2024 [Page 40]

Internet-Draft NCTID October 2023

 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc6614">
 <name>R9</name>
 <matches>
 <ipv4>
 <source-port>
 <port>830</port>
 </source-port>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case the client provides a txid value for a non-versioned node,
 the server needs to treat the node as having the same txid value as
 the closest ancestor that does have a txid value.

Lindblad Expires 12 April 2024 [Page 41]

Internet-Draft NCTID October 2023

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="7"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl>
 <name>A2</name>
 <aces>
 <ace>
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp txid:etag="nc4711"/>
 </ipv4>
 </matches>
 </ace>
 </aces>
 </acl>
 </acls>
 </filter>
 </get-config>
 </rpc>

 If a txid value is specified for a leaf, and the txid value matches
 (i.e. is identical to the server’s txid value, or found earlier in
 the server’s Txid History), the leaf value is pruned.

Lindblad Expires 12 April 2024 [Page 42]

Internet-Draft NCTID October 2023

 <rpc-reply message-id="7"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl>
 <name>A2</name>
 <aces>
 <ace>
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp txid:etag="="/>
 </ipv4>
 </matches>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

5.3. Configuration Change

 A client that wishes to update the ace R1 protocol to tcp might send:

Lindblad Expires 12 April 2024 [Page 43]

Internet-Draft NCTID October 2023

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="8">
 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid">
 <target>
 <running/>
 </target>
 <test-option>test-then-set</test-option>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 <config>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </config>
 </edit-config>
 </rpc>

 The server would update the protocol leaf in the running datastore,
 and return an rpc-reply as follows:

 <rpc-reply message-id="8"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc7688"/>
 </rpc-reply>

 A subsequent get-config request for "acls", with txid:etag="?" might
 then return:

Lindblad Expires 12 April 2024 [Page 44]

Internet-Draft NCTID October 2023

 <rpc-reply message-id="9"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc7688">
 <acl txid:etag="nc7688">
 <name>A1</name>
 <aces txid:etag="nc7688">
 <ace txid:etag="nc7688">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc6614">
 <name>A2</name>
 <aces txid:etag="nc6614">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>

Lindblad Expires 12 April 2024 [Page 45]

Internet-Draft NCTID October 2023

 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc6614">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>830</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case the server at this point received a configuration change from
 another source, such as a CLI operator, removing ace R8 and R9 in acl
 A2, a subsequent get-config request for acls, with txid:etag="?"
 might then return:

 <rpc-reply message-id="9"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="cli2222">
 <acl txid:etag="nc7688">
 <name>A1</name>
 <aces txid:etag="nc7688">

Lindblad Expires 12 April 2024 [Page 46]

Internet-Draft NCTID October 2023

 <ace txid:etag="nc7688">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="cli2222">
 <name>A2</name>
 <aces txid:etag="cli2222">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

5.4. Conditional Configuration Change

 If a client wishes to delete acl A1 if and only if its configuration
 has not been altered since this client last synchronized its
 configuration with the server, at which point it received the etag
 "nc7688" for acl A1, regardless of any possible changes to other
 acls, it might send:

Lindblad Expires 12 April 2024 [Page 47]

Internet-Draft NCTID October 2023

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid">
 <edit-config>
 <target>
 <running/>
 </target>
 <test-option>test-then-set</test-option>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 <config>
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl nc:operation="delete"
 txid:etag="nc7688">
 <name>A1</name>
 </acl>
 </acls>
 </config>
 </edit-config>
 </rpc>

 If acl A1 now has the etag txid value "nc7688", as expected by the
 client, the transaction goes through, and the server responds
 something like:

 <rpc-reply message-id="10"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc8008"/>
 </rpc-reply>

 A subsequent get-config request for acls, with txid:etag="?" might
 then return:

Lindblad Expires 12 April 2024 [Page 48]

Internet-Draft NCTID October 2023

 <rpc-reply message-id="11"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc8008">
 <acl txid:etag="cli2222">
 <name>A2</name>
 <aces txid:etag="cli2222">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case acl A1 did not have the expected etag txid value "nc7688"
 when the server processed this request, nor was the client’s txid
 value found later in the server’s Txid History, then the server
 rejects the transaction, and might send:

Lindblad Expires 12 April 2024 [Page 49]

Internet-Draft NCTID October 2023

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid"
 message-id="11">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <ietf-netconf-txid:txid-value-mismatch-error-info>
 <ietf-netconf-txid:mismatch-path>
 /acl:acls/acl:acl[acl:name="A1"]
 </ietf-netconf-txid:mismatch-path>
 <ietf-netconf-txid:mismatch-etag-value>
 cli6912
 </ietf-netconf-txid:mismatch-etag-value>
 </ietf-netconf-txid:txid-value-mismatch-error-info>
 </error-info>
 </rpc-error>
 </rpc-reply>

5.5. Reading from the Candidate Datastore

 Let’s assume that a get-config towards the running datastore
 currently contains the following data and txid values:

Lindblad Expires 12 April 2024 [Page 50]

Internet-Draft NCTID October 2023

 <rpc-reply message-id="12"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc4711">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc2219">
 <name>R2</name>
 <matches>
 <ipv4>
 <dscp>21</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

Lindblad Expires 12 April 2024 [Page 51]

Internet-Draft NCTID October 2023

 A client issues discard-changes (to make the candidate datastore
 equal to the running datastore), and issues an edit-config to change
 the R1 protocol from udp (17) to tcp (6), and then executes a get-
 config with the txid-request attribute "?" set on the acl A1, the
 server might respond:

 <rpc-reply message-id="13"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl txid:etag="!">
 <name>A1</name>
 <aces txid:etag="!">
 <ace txid:etag="!">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc2219">
 <name>R2</name>
 <matches>
 <ipv4>
 <dscp>21</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

Lindblad Expires 12 April 2024 [Page 52]

Internet-Draft NCTID October 2023

 Here, the txid-unknown value "!" is sent by the server. This
 particular server implementation does not know beforehand which txid
 value would be used for this versioned node after commit. It will be
 a value different from the current corresponding txid value in the
 running datastore.

 In case the server is able to predict the txid value that would be
 used for the versioned node after commit, it could respond with that
 value instead. Let’s say the server knows the txid would be "7688"
 if the candidate datastore was committed without further changes,
 then it would respond with that value in each place where the example
 shows "!" above.

5.6. Commit

 The client MAY request that the new etag txid value is returned as an
 attribute on the ok response for a successful commit. The client
 requests this by adding with-etag to the commit operation.

 For example, a client might send:

 <rpc message-id="14"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid"
 <commit>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 </commit>
 </rpc>

 Assuming the server accepted the transaction, it might respond:

 <rpc-reply message-id="15"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc8008"/>
 </rpc-reply>

5.7. YANG-Push

 A client MAY request that the updates for one or more YANG-Push
 subscriptions are annotated with the txid values. The request might
 look like this:

Lindblad Expires 12 April 2024 [Page 53]

Internet-Draft NCTID October 2023

 <netconf:rpc message-id="16"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-txid-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:running
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 /acl:acls
 </yp:datastore-xpath-filter>
 <yp:on-change/>
 <ietf-netconf-txid-yp:with-etag>
 true
 </ietf-netconf-txid-yp:with-etag>
 </establish-subscription>
 </netconf:rpc>

 In case a client wishes to modify a previous subscription request in
 order to no longer receive YANG-Push subscription updates, the
 request might look like this:

 <rpc message-id="17"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-txid-yang-push">
 <id>1011</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:running
 </yp:datastore>
 <ietf-netconf-txid-yp:with-etag>
 false
 </ietf-netconf-txid-yp:with-etag>
 </modify-subscription>
 </rpc>

 A server might send a subscription update like this:

Lindblad Expires 12 April 2024 [Page 54]

Internet-Draft NCTID October 2023

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push">
 <eventTime>2022-04-04T06:00:24.16Z</eventTime>
 <push-change-update
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>89</id>
 <datastore-changes>
 <yang-patch>
 <patch-id>0</patch-id>
 <edit>
 <edit-id>edit1</edit-id>
 <operation>delete</operation>
 <target xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 /acl:acls
 </target>
 <value>
 <acl xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <name>A1</name>
 </acl>
 </value>
 </edit>
 <ietf-netconf-txid-yp:etag-value>
 nc8008
 </ietf-netconf-txid-yp:etag-value>
 </yang-patch>
 </datastore-changes>
 </push-change-update>
 </notification>

5.8. NMDA Compare

 The following example is taken from section 5 of [RFC9144]. It
 compares the difference between the operational and intended
 datastores for a subtree under "interfaces".

 In this version of the example, the client requests that txid values,
 in this case etag-values, are annotated to the result.

Lindblad Expires 12 April 2024 [Page 55]

Internet-Draft NCTID October 2023

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <compare xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:ietf-netconf-txid-nmda-compare=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare">
 <source>ds:operational</source>
 <target>ds:intended</target>
 <report-origin/>
 <ietf-netconf-txid-nmda-compare:with-etag>
 true
 </ietf-netconf-txid-nmda-compare:with-etag>
 <xpath-filter
 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 /if:interfaces
 </xpath-filter>
 </compare>
 </rpc>

 RPC reply when a difference is detected:

Lindblad Expires 12 April 2024 [Page 56]

Internet-Draft NCTID October 2023

 <rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 message-id="101">
 <differences
 xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 xmlns:ietf-netconf-txid-nmda-compare=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare">
 <yang-patch>
 <patch-id>interface status</patch-id>
 <comment>
 diff between operational (source) and intended (target),
 with txid values taken from intended.
 </comment>
 <edit>
 <edit-id>1</edit-id>
 <operation>replace</operation>
 <target>/ietf-interfaces:interface=eth0/enabled</target>
 <value>
 <if:enabled>false</if:enabled>
 </value>
 <source-value>
 <if:enabled or:origin="or:learned">true</if:enabled>
 </source-value>
 <ietf-netconf-txid-nmda-compare:etag-value>
 4004
 </ietf-netconf-txid-nmda-compare:etag-value>
 </edit>
 <edit>
 <edit-id>2</edit-id>
 <operation>create</operation>
 <target>/ietf-interfaces:interface=eth0/description</target>
 <value>
 <if:description>ip interface</if:description>
 </value>
 <ietf-netconf-txid-nmda-compare:etag-value>
 8008
 </ietf-netconf-txid-nmda-compare:etag-value>
 </edit>
 </yang-patch>
 </differences>
 </rpc-reply>

 The same response in RESTCONF (using JSON format):

Lindblad Expires 12 April 2024 [Page 57]

Internet-Draft NCTID October 2023

 HTTP/1.1 200 OK
 Date: Thu, 24 Jan 2019 20:56:30 GMT
 Server: example-server
 Content-Type: application/yang-data+json

 { "ietf-nmda-compare:output" : {
 "differences" : {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "interface status",
 "comment" : "diff between intended (source) and operational",
 "edit" : [
 {
 "edit-id" : "1",
 "operation" : "replace",
 "target" : "/ietf-interfaces:interface=eth0/enabled",
 "value" : {
 "ietf-interfaces:interface/enabled" : "false"
 },
 "source-value" : {
 "ietf-interfaces:interface/enabled" : "true",
 "@ietf-interfaces:interface/enabled" : {
 "ietf-origin:origin" : "ietf-origin:learned"
 }
 },
 "ietf-netconf-txid-nmda-compare:etag-value": "4004"
 },
 {
 "edit-id" : "2",
 "operation" : "create",
 "target" : "/ietf-interfaces:interface=eth0/description",
 "value" : {
 "ietf-interface:interface/description" : "ip interface"
 },
 "ietf-netconf-txid-nmda-compare:etag-value": "8008"
 }
]
 }
 }
 }
 }

6. YANG Modules

6.1. Base module for txid in NETCONF

Lindblad Expires 12 April 2024 [Page 58]

Internet-Draft NCTID October 2023

 <CODE BEGINS>
 module ietf-netconf-txid {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid’;
 prefix ietf-netconf-txid;

 import ietf-netconf {
 prefix nc;
 }

 import ietf-netconf-nmda {
 prefix ncds;
 }

 import ietf-yang-structure-ext {
 prefix sx;
 }

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for NMDA.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

Lindblad Expires 12 April 2024 [Page 59]

Internet-Draft NCTID October 2023

 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2023-03-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 feature last-modified {
 description "Servers implementing this module MUST support the
 etag txid mechanism. Servers MAY also support the
 last-modified txid mechanism. Support is shown by announcing
 this feature.";
 }

 extension versioned-node {
 description "This statement is used by servers to declare that a
 the server is maintaining a Txid for the YANG node with this
 statement. Which YANG nodes are versioned nodes may be useful
 information for clients (especially during development).

 Servers are not required to use this statement to declare which
 nodes are versioned nodes.

 Example of use:

 container interfaces {
 ietf-netconf-txid:versioned-node;
 ...
 }
 ";
 }

 typedef etag-t {
 type string {
 pattern ".* .*" {
 modifier invert-match;
 }
 pattern ’.*".*’ {
 modifier invert-match;

Lindblad Expires 12 April 2024 [Page 60]

Internet-Draft NCTID October 2023

 }
 pattern ".*\\.*" {
 modifier invert-match;
 }
 }
 description
 "Unique Entity-tag txid value representing a specific
 transaction. Could be any string that does not contain
 spaces, double quotes or backslash. The txid values ’?’,
 ’!’ and ’=’ have special meaning.";
 }

 typedef last-modified-t {
 type union {
 type yang:date-and-time;
 type enumeration {
 enum ? {
 description "Txid value used by clients that is
 guaranteed not to match any txid on the server.";
 }
 enum ! {
 description "Txid value used by servers to indicate
 the node in the candidate datastore has changed
 relative the running datastore, but not yet received
 a new txid value on the server.";
 }
 enum = {
 description "Txid value used by servers to indicate
 that contents has been pruned due to txid match
 between client and server.";
 }
 }
 }
 description
 "Last-modified txid value representing a specific transaction.
 The txid values ’?’, ’!’ and ’=’ have special meaning.";
 }

 grouping txid-grouping {
 leaf with-etag {
 type boolean;
 description
 "Indicates whether the client requests the server to include
 a txid:etag txid attribute when the configuration has
 changed.";
 }
 leaf with-last-modified {
 if-feature last-modified;

Lindblad Expires 12 April 2024 [Page 61]

Internet-Draft NCTID October 2023

 type boolean;
 description
 "Indicates whether the client requests the server to include
 a txid:last-modified attribute when the configuration has
 changed.";
 }
 description
 "Grouping for txid mechanisms, to be augmented into
 rpcs that modify configuration data stores.";
 }

 grouping txid-value-grouping {
 leaf etag-value {
 type etag-t;
 description
 "Indicates server’s txid value for a YANG node.";
 }
 leaf last-modified-value {
 if-feature last-modified;
 type last-modified-t;
 description
 "Indicates server’s txid value for a YANG node.";
 }
 description
 "Grouping for txid mechanisms, to be augmented into
 output of rpcs that return txid metadata for configuration
 data stores.";
 }

 augment /nc:edit-config/nc:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 edit-config operation";
 }

 augment /nc:commit/nc:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 commit operation";
 }

 augment /ncds:edit-data/ncds:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 edit-data operation";

Lindblad Expires 12 April 2024 [Page 62]

Internet-Draft NCTID October 2023

 }

 sx:structure txid-value-mismatch-error-info {
 container txid-value-mismatch-error-info {
 description
 "This error is returned by a NETCONF server when a client
 sends a configuration change request, with the additonal
 condition that the server aborts the transaction if the
 server’s configuration has changed from what the client
 expects, and the configuration is found not to actually
 not match the client’s expectation.";
 leaf mismatch-path {
 type instance-identifier;
 description
 "Indicates the YANG path to the element with a mismatching
 etag txid value.";
 }
 leaf mismatch-etag-value {
 type etag-t;
 description
 "Indicates server’s txid value of the etag
 attribute for one mismatching element.";
 }
 leaf mismatch-last-modified-value {
 if-feature last-modified;
 type last-modified-t;
 description
 "Indicates server’s txid value of the last-modified
 attribute for one mismatching element.";
 }
 }
 }
 }
 <CODE ENDS>

6.2. Additional support for txid in YANG-Push

 <CODE BEGINS>
 module ietf-netconf-txid-yang-push {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push’;
 prefix ietf-netconf-txid-yp;

 import ietf-subscribed-notifications {
 prefix sn;
 reference
 "RFC 8639: Subscription to YANG Notifications";

Lindblad Expires 12 April 2024 [Page 63]

Internet-Draft NCTID October 2023

 }

 import ietf-yang-push {
 prefix yp;
 reference
 "RFC 8641: Subscriptions to YANG Datastores";
 }

 import ietf-yang-patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch Media Type";
 }

 import ietf-netconf-txid {
 prefix ietf-netconf-txid;
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for YANG Push.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

Lindblad Expires 12 April 2024 [Page 64]

Internet-Draft NCTID October 2023

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2022-04-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 augment "/sn:establish-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters
 that apply specifically to datastore updates to RPC input.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/sn:modify-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/sn:subscriptions/sn:subscription" {
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/yp:push-change-update/yp:datastore-changes/" +
 "yp:yang-patch" {
 description
 "This augmentation makes it possible for servers to return
 txid-values.";
 uses ietf-netconf-txid:txid-value-grouping;
 }
 }
 <CODE ENDS>

6.3. Additional support for txid in NMDA Compare

Lindblad Expires 12 April 2024 [Page 65]

Internet-Draft NCTID October 2023

 <CODE BEGINS>
 module ietf-netconf-txid-nmda-compare {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare’;
 prefix ietf-netconf-txid-nmda-compare;

 import ietf-nmda-compare {
 prefix cmp;
 reference
 "RFC 9144: Comparison of Network Management Datastore
 Architecture (NMDA) Datastores";
 }

 import ietf-netconf-txid {
 prefix ietf-netconf-txid;
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for NMDA Compare.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

Lindblad Expires 12 April 2024 [Page 66]

Internet-Draft NCTID October 2023

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2023-05-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 augment "/cmp:compare/cmp:input" {
 description
 "This augmentation makes it possible for clients to request
 txids to be returned.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/cmp:compare/cmp:output/cmp:compare-response/" +
 "cmp:differences/cmp:differences/cmp:yang-patch/cmp:edit" {
 description
 "This augmentation makes it possible for servers to return
 txid-values.";
 container most-recent {
 uses ietf-netconf-txid:txid-value-grouping;
 }
 }
 }
 <CODE ENDS>

7. Security Considerations

7.1. NACM Access Control

 NACM, [RFC8341], access control processing happens as usual,
 independently of any txid handling, if supported by the server and
 enabled by the NACM configuration.

 It should be pointed out however, that when txid information is added
 to a reply, it may occasionally be possible for a client to deduce
 that a configuration change has happened in some part of the
 configuration to which it has no access rights.

 For example, a client may notice that the root node txid has changed
 while none of the subtrees it has access to have changed, and thereby
 conclude that someone else has made a change to some part of the
 configuration that is not acessible by the client.

Lindblad Expires 12 April 2024 [Page 67]

Internet-Draft NCTID October 2023

7.1.1. Hash-based Txid Algorithms

 Servers that implement NACM and choose to implement a hash-based txid
 algorithm over the configuration may reveal to a client that the
 configuration of a subtree that the client has no access to is the
 same as it was at an earlier point in time.

 For example, a client with partial access to the configuration might
 observe that the root node txid was 1234. After a few configuration
 changes by other parties, the client may again observe that the root
 node txid is 1234. It may then deduce that the configuration is the
 same as earlier, even in the parts of the configuration it has no
 access to.

 In some use cases, this behavior may be considered a feature, since
 it allows a security client to verify that the configuration is the
 same as expected, without transmitting or storing the actual
 configuration.

7.2. Unchanged Configuration

 It will also be possible for clients to deduce that a configuration
 change has not happened during some period, by simply observing that
 the root node (or other subtree) txid remains unchanged. This is
 true regardless of NACM being deployed or choice of txid algorithm.

 Again, there may be use cases where this behavior may be considered a
 feature, since it allows a security client to verify that the
 configuration is the same as expected, without transmitting or
 storing the actual configuration.

8. IANA Considerations

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol (NETCONF) Capability URNs’
 registry:

 urn:ietf:params:netconf:capability:txid:1.0

 This document registers four XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

Lindblad Expires 12 April 2024 [Page 68]

Internet-Draft NCTID October 2023

 URI: urn:ietf:params:xml:ns:netconf:txid:1.0

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers three module names in the ’YANG Module Names’
 registry, defined in [RFC6020].

 name: ietf-netconf-txid

 prefix: ietf-netconf-txid

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-txid

 RFC: XXXX

 and

 name: ietf-netconf-txid-yp

 prefix: ietf-netconf-txid-yp

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push

 RFC: XXXX

 and

 name: ietf-netconf-txid-nmda-compare

 prefix: ietf-netconf-txid-nmda-compare

 namespace:
 urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare

 RFC: XXXX

9. Changes

Lindblad Expires 12 April 2024 [Page 69]

Internet-Draft NCTID October 2023

9.1. Major changes in -02 since -01

 * Added optional to implement Txid History concept in order to make
 the algorithm both more efficient and less verbose. Servers may
 still choose a Txid History size of zero, which makes the server
 behavior the same as in earlier versions of this document.
 Implementations that use txids consisting of a monotonically
 increasing integer or timestamp will be able to determine the
 sequnce of transactions in the history directly, making this
 trivially simple to implement.

 * Added extension statement versioned-node, which servers may use to
 declare which YANG tree nodes are Versioned Nodes. This is
 entirely optional, however, but possibly useful to client
 developers.

 * Renamed YANG feature ietf-netconf-txid:txid-last-modified to ietf-
 netconf-txid:last-modified in order to reduce redundant mentions
 of "txid".

9.2. Major changes in -01 since -00

 * Changed YANG-push txid mechanism to use a simple leaf rather than
 an attribute to convey txid information. This is preferable since
 YANG-push content may be requested using other protocols than
 NETCONF and other encodings than XML. By removing the need for
 XML attributes in this context, the mechanism becomes
 significantly more portable.

 * Added a section and YANG module augmenting the RFC9144 NMDA
 datastore compare operation to allow request and reply with txid
 information. This too is done with augments of plain leafs for
 maximum portability.

 * Added note clarifying that the txid attributes used in the XML
 encoding are never used in JSON (since RESTCONF uses HTTP headers
 instead).

 * Added note clarifying that pruning happens when client and server
 txids _match_, since the server sending information to the client
 only makes sense when the information on the client is out of
 date.

 * Added note clarifying that this entire document is about config
 true data only.

Lindblad Expires 12 April 2024 [Page 70]

Internet-Draft NCTID October 2023

 * Rephrased slightly when referring to the candidate datastore to
 keep making sense in the event that private candidate datastores
 become a reality in the future.

 * Added a note early on to more clearly lay out the structure of
 this document, with a first part about the generic mechanism part,
 and a second part about the two specific txid mechanisms.

 * Corrected acl data model examples to conform to their YANG module.

9.3. Major changes in draft-ietf-netconf-transaction-id-00 since -02

 * Changed the logic around how txids are handled in the candidate
 datastore, both when reading (get-config, get-data) and writing
 (edit-config, edit-data). Introduced a special "txid-unknown"
 value "!".

 * Changed the logic of copy-config to be similar to edit-config.

 * Clarified how txid values interact with when-dependencies together
 with default values.

 * Added content to security considerations.

 * Added a high-level example for YANG-Push subscriptions with txid.

 * Updated language about error-info sent at txid mismatch in an
 edit-config: error-info with mismatch details MUST be sent when
 mismatch detected, and that the server can choose one of the txid
 mismatch occurrences if there is more than one.

 * Some rewording and minor additions for clarification, based on
 mailing list feedback.

 * Divided RFC references into normative and informative.

 * Corrected a logic error in the second figure (figure 6) in the
 "Conditional Transactions" section

9.4. Major changes in -02 since -01

 * A last-modified txid mechanism has been added (back). This
 mechanism aligns well with the Last-Modified mechanism defined in
 RESTCONF [RFC8040], but is not a carbon copy.

Lindblad Expires 12 April 2024 [Page 71]

Internet-Draft NCTID October 2023

 * YANG-Push functionality has been added. This allows YANG-Push
 users to receive txid updates as part of the configuration
 updates. This functionality comes in a separate YANG module, to
 allow implementors to cleanly keep all this functionality out.

 * Changed name of "versioned elements". They are now called
 "Versioned Nodes".

 * Clarified txid behavior for transactions toward the Candidate
 datastore, and some not so common situations, such as when a
 client specifies a txid for a non-versioned node, and when there
 are when-statement dependencies across subtrees.

 * Examples provided for the abstract mechanism level with simple
 message flow diagrams.

 * More examples on protocol level, and with ietf-interfaces as
 example target module replaced with ietf-access-control to reduce
 confusion.

 * Explicit list of XPaths to clearly state where etag or last-
 modified attributes may be added by clients and servers.

 * Document introduction restructured to remove duplication between
 sections and to allow multiple (etag and last-modified) txid
 mechanisms.

 * Moved the actual YANG module code into proper module files that
 are included in the source document. These modules can be
 compiled as proper modules without any extraction tools.

9.5. Major changes in -01 since -00

 * Updated the text on numerous points in order to answer questions
 that appeared on the mailing list.

 * Changed the document structure into a general transaction id part
 and one etag specific part.

 * Renamed entag attribute to etag, prefix to txid, namespace to
 urn:ietf:params:xml:ns:yang:ietf-netconf-txid.

 * Set capability string to
 urn:ietf:params:netconf:capability:txid:1.0

 * Changed YANG module name, namespace and prefix to match names
 above.

Lindblad Expires 12 April 2024 [Page 72]

Internet-Draft NCTID October 2023

 * Harmonized/slightly adjusted etag value space with RFC 7232 and
 RFC 8040.

 * Removed all text discussing etag values provided by the client
 (although this is still an interesting idea, if you ask the
 author)

 * Clarified the etag attribute mechanism, especially when it comes
 to matching against non-versioned elements, its cascading upwards
 in the tree and secondary effects from when- and choice-
 statements.

 * Added a mechanism for returning the server assigned etag value in
 get-config and get-data.

 * Added section describing how the NETCONF discard-changes, copy-
 config, delete-config and commit operations work with respect to
 etags.

 * Added IANA Considerations section.

 * Removed all comments about open questions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

Lindblad Expires 12 April 2024 [Page 73]

Internet-Draft NCTID October 2023

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/rfc/rfc8641>.

 [RFC9144] Clemm, A., Qu, Y., Tantsura, J., and A. Bierman,
 "Comparison of Network Management Datastore Architecture
 (NMDA) Datastores", RFC 9144, DOI 10.17487/RFC9144,
 December 2021, <https://www.rfc-editor.org/rfc/rfc9144>.

10.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7232>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8341>.

Acknowledgments

 The author wishes to thank Benoît Claise for making this work happen,
 and the following individuals, who all provided helpful comments: Per
 Andersson, James Cumming, Kent Watsen, Andy Bierman, Robert Wilton,
 Qiufang Ma, Jason Sterne and Robert Varga.

Author’s Address

Lindblad Expires 12 April 2024 [Page 74]

Internet-Draft NCTID October 2023

 Jan Lindblad
 Cisco Systems
 Email: jlindbla@cisco.com

Lindblad Expires 12 April 2024 [Page 75]

NETCONF G. Zheng
Internet-Draft T. Zhou
Intended status: Standards Track Huawei
Expires: 13 April 2024 T. Graf
 Swisscom
 P. Francois
 A. Huang Feng
 INSA-Lyon
 P. Lucente
 NTT
 11 October 2023

 UDP-based Transport for Configured Subscriptions
 draft-ietf-netconf-udp-notif-11

Abstract

 This document describes a UDP-based protocol for YANG notifications
 to collect data from network nodes. A shim header is proposed to
 facilitate the data streaming directly from the publishing process on
 network processor of line cards to receivers. The objective is to
 provide a lightweight approach to enable higher frequency and less
 performance impact on publisher and receiver processes compared to
 already established notification mechanisms.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Zheng, et al. Expires 13 April 2024 [Page 1]

Internet-Draft unyte-udp-notif October 2023

 This Internet-Draft will expire on 13 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Configured Subscription to UDP-Notif 4
 3. UDP-Based Transport . 5
 3.1. Design Overview . 5
 3.2. Format of the UDP-Notif Message Header 5
 3.3. Data Encoding . 7
 4. Options . 8
 4.1. Segmentation Option 8
 4.2. Private Encoding Option 9
 5. Applicability . 10
 5.1. Congestion Control 11
 5.2. Message Size . 11
 5.3. Reliability . 11
 6. Secured layer for UDP-notif 12
 6.1. Session lifecycle . 12
 6.1.1. DTLS Session Initiation 12
 6.1.2. Publish Data . 13
 6.1.3. Session termination 13
 7. A YANG Data Model for Management of UDP-Notif 14
 7.1. Generic grouping for UDP-based applications 14
 7.1.1. YANG Tree . 14
 7.1.2. YANG Module . 15
 7.2. YANG to configure UDP-notif 18
 7.3. YANG Module . 19
 8. IANA Considerations . 22
 8.1. IANA registries . 22
 8.2. URI . 23
 8.3. YANG module name . 23
 9. Implementation Status . 24
 9.1. Open Source Publisher 24

Zheng, et al. Expires 13 April 2024 [Page 2]

Internet-Draft unyte-udp-notif October 2023

 9.2. Open Source Receiver Library 24
 9.3. Pmacct Data Collection 24
 9.4. Huawei VRP . 24
 10. Security Considerations 24
 11. Acknowledgements . 25
 12. References . 25
 12.1. Normative References 25
 12.2. Informative References 27
 Appendix A. UDP-notif Examples 28
 A.1. Configuration for UDP-notif transport with DTLS
 disabled . 28
 A.2. Configuration for UDP-notif transport with DTLS
 enabled . 29
 A.3. YANG Push message with UDP-notif transport protocol . . . 32
 Authors’ Addresses . 33

1. Introduction

 The mechanism to support a subscription of a continuous and
 customized stream of updates from a YANG datastore [RFC8342] is
 defined in [RFC8639] and [RFC8641] and is abbreviated as Sub-Notif.
 Requirements for Subscription to YANG Datastores are defined in
 [RFC7923].

 The mechanism separates the management and control of subscriptions
 from the transport used to deliver the data. Three transport
 mechanisms, namely NETCONF transport [RFC8640], RESTCONF transport
 [RFC8650], and HTTPS transport [I-D.ietf-netconf-https-notif] have
 been defined so far for such notification messages.

 While powerful in their features and general in their architecture,
 the currently available transport mechanisms need to be complemented
 to support data publications at high velocity from network nodes that
 feature a distributed architecture. The currently available
 transports are based on TCP and lack the efficiency needed to
 continuously send notifications at high velocity.

 This document specifies a transport option for Sub-Notif that
 leverages UDP. Specifically, it facilitates the distributed data
 collection mechanism described in
 [I-D.ietf-netconf-distributed-notif]. In the case of publishing from
 multiple network processors on multiple line cards, centralized
 designs require data to be internally forwarded from those network
 processors to the push server, presumably on a route processor, which
 then combines the individual data items into a single consolidated
 stream. The centralized data collection mechanism can result in a
 performance bottleneck, especially when large amounts of data are
 involved.

Zheng, et al. Expires 13 April 2024 [Page 3]

Internet-Draft unyte-udp-notif October 2023

 What is needed is a mechanism that allows for directly publishing
 from multiple network processors on line cards, without passing them
 through an additional processing stage for internal consolidation.
 The proposed UDP-based transport allows for such a distributed data
 publishing approach.

 * Firstly, a UDP approach reduces the burden of maintaining a large
 amount of active TCP connections at the receiver, notably in cases
 where it collects data from network processors on line cards from
 a large amount of network nodes.

 * Secondly, as no connection state needs to be maintained, UDP
 encapsulation can be easily implemented by the hardware of the
 publication streamer, which further improves performance.

 * Ultimately, such advantages allow for a larger data analysis
 feature set, as more voluminous, finer grained data sets can be
 streamed to the receiver.

 The transport described in this document can be used for transmitting
 notification messages over both IPv4 and IPv6.

 This document describes the notification mechanism. It is intended
 to be used in conjunction with [RFC8639], extended by
 [I-D.ietf-netconf-distributed-notif].

 Section 2 describes the control of the proposed transport mechanism.
 Section 3 details the notification mechanism and message format.
 Section 4 describes the use of options in the notification message
 header. Section 5 covers the applicability of the proposed
 mechanism. Section 6 describes a mechanism to secure the protocol in
 open networks.

2. Configured Subscription to UDP-Notif

 This section describes how the proposed mechanism can be controlled
 using subscription channels based on NETCONF or RESTCONF.

 As specified in Sub-Notif, configured subscriptions contain the
 location information of all the receivers, including the IP address
 and the port number, so that the publisher can actively send UDP-
 Notif messages to the corresponding receivers.

 Note that receivers MAY NOT be already up and running when the
 configuration of the subscription takes effect on the monitored
 network node. The first message MUST be a separate subscription-
 started notification to indicate the Receiver that the stream has
 started flowing. Then, the notifications can be sent immediately

Zheng, et al. Expires 13 April 2024 [Page 4]

Internet-Draft unyte-udp-notif October 2023

 without delay. All the subscription state notifications, as defined
 in Section 2.7 of [RFC8639], MUST be encapsulated in separate
 notification messages.

3. UDP-Based Transport

 In this section, we specify the UDP-Notif Transport behavior.
 Section 3.1 describes the general design of the solution.
 Section 3.2 specifies the UDP-Notif message format and Section 3.3
 describes the encoding of the message payload.

3.1. Design Overview

 As specified in Sub-Notif, the YANG data is encapsulated in a
 NETCONF/RESTCONF notification message, which is then encapsulated and
 carried using a transport protocols such as TLS or HTTP2. This
 document defines a UDP based transport. Figure 1 illustrates the
 structure of an UDP-Notif message.

 * The Message Header contains information that facilitate the
 message transmission before deserializing the notification
 message.

 * Notification Message is the encoded content that is transported by
 the publication stream. The common encoding methods are listed in
 Section 3.2. The structure of the Notification Message is defined
 in Section 2.6 of [RFC8639] and a YANG model has been proposed in
 [I-D.ahuang-netconf-notif-yang].
 [I-D.ietf-netconf-notification-messages] proposes a structure to
 send bundled notifications in a single message.

 +-------+ +--------------+ +--------------+
 | UDP | | Message | | Notification |
 | | | Header | | Message |
 +-------+ +--------------+ +--------------+

 Figure 1: UDP-Notif Message Overview

3.2. Format of the UDP-Notif Message Header

 The UDP-Notif Message Header contains information that facilitate the
 message transmission before deserializing the notification message.
 The data format is shown in Figure 2.

Zheng, et al. Expires 13 April 2024 [Page 5]

Internet-Draft unyte-udp-notif October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-----+-+-------+---------------+-------------------------------+
 | Ver |S| MT | Header Len | Message Length |
 +-----+-+-------+---------------+-------------------------------+
 | Message Publisher ID |
 +---+
 | Message ID |
 +---+
 ˜ Options ˜
 +---+

 Figure 2: UDP-Notif Message Header Format

 The Message Header contains the following field:

 * Ver indicates the UDP-notif protocol header version. The values
 are allocated by the IANA registry "UDP-notif header version".
 The current header version number is 1.

 * S represents the space of media type specified in the MT field.
 When S is unset, MT represents the standard media types as defined
 in this document. When S is set, MT represents a private space to
 be freely used for non standard encodings.

 * MT is a 4 bit identifier to indicate the media type used for the
 Notification Message. 16 types of encoding can be expressed. When
 the S bit is unset, the following values apply:

 - 0: Reserved;

 - 1: application/yang-data+json [RFC8040]

 - 2: application/yang-data+xml [RFC8040]

 - 3: application/yang-data+cbor [RFC9254]

 * Header Len is the length of the message header in octets,
 including both the fixed header and the options.

 * Message Length is the total length of the UDP-notif message within
 one UDP datagram, measured in octets, including the message
 header. When the Notification Message is segmented using the
 Segmentation Options defined in Section 4.1 the Message Length is
 the total length of the current, segmented UDP-notif message, not
 the length of the entire Notification message.

Zheng, et al. Expires 13 April 2024 [Page 6]

Internet-Draft unyte-udp-notif October 2023

 * Message Publisher ID is a 32-bit identifier defined in
 [I-D.ietf-netconf-distributed-notif]. This identifier is unique
 to the publisher node and identifies the publishing process of the
 node to allow the disambiguation of an information source.
 Message unicity is obtained from the conjunction of the Message
 Publisher ID and the Message ID field described below. If Message
 Publisher ID unicity is not preserved through the collection
 domain, the source IP address of the UDP datagram SHOULD be used
 in addition to the Message Publisher ID to identify the
 information source. If a transport layer relay is used, Message
 Publisher ID unicity must be preserved through the collection
 domain.

 * The Message ID is generated continuously by the publisher of UDP-
 Notif messages. A publisher MUST use different Message ID values
 for different messages generated with the same Message Publisher
 ID. Note that the main purpose of the Message ID is to
 reconstruct messages which were segmented using the segmentation
 option described in section Section 4.1. The Message ID values
 SHOULD be incremented by one for each successive message
 originated with the same Message Publisher ID, so that message
 loss can be detected. Furthermore, incrementing the Message ID by
 one allows for a large amount of time to happen before the Message
 ID’s are reused due to wrapping around. Different subscribers MAY
 share the same Message ID sequence.

 * Options is a variable-length field in the TLV format. When the
 Header Length is larger than 12 octets, which is the length of the
 fixed header, Options TLVs follow directly after the fixed message
 header (i.e., Message ID). The details of the options are
 described in Section 4.

3.3. Data Encoding

 UDP-Notif message data can be encoded in CBOR, XML or JSON format.
 It is conceivable that additional encodings may be supported in the
 future. This can be accomplished by augmenting the subscription data
 model with additional identity statements used to refer to requested
 encodings.

 Private encodings can be using the S bit of the header. When the S
 bit is set, the value of the MT field is left to be defined and
 agreed upon by the users of the private encoding. An option is
 defined in Section 4.2 for more verbose encoding descriptions than
 what can be described with the MT field.

Zheng, et al. Expires 13 April 2024 [Page 7]

Internet-Draft unyte-udp-notif October 2023

 Implementation MAY support multiple encoding methods per
 subscription. When bundled notifications are supported between the
 publisher and the receiver, only subscribed notifications with the
 same encoding can be bundled in a given message.

4. Options

 All the options are defined with the following format, illustrated in
 Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+--------------------------------
 | Type | Length | Variable-length data
 +---------------+---------------+--------------------------------

 Figure 3: Generic Option Format

 * Type: 1 octet describing the option type;

 * Length: 1 octet representing the total number of octets in the
 TLV, including the Type and Length fields;

 * Variable-length data: 0 or more octets of TLV Value.

 When more than one option is used in the UDP-notif header, options
 MUST be ordered by the Type value. Messages with unordered options
 MAY be dropped by the Receiver.

4.1. Segmentation Option

 The UDP payload length is limited to 65535. Application level
 headers will make the actual payload shorter. Even though binary
 encodings such as CBOR may not require more space than what is left,
 more voluminous encodings such as JSON and XML may suffer from this
 size limitation. Although IPv4 and IPv6 publishers can fragment
 outgoing packets exceeding their Maximum Transmission Unit (MTU),
 fragmented IP packets may not be desired for operational and
 performance reasons.

 Consequently, implementations of the mechanism SHOULD provide a
 configurable max-segment-size option to control the maximum size of a
 payload.

Zheng, et al. Expires 13 April 2024 [Page 8]

Internet-Draft unyte-udp-notif October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-----------------------------+-+
 | Type | Length | Segment Number |L|
 +---------------+---------------+-----------------------------+-+

 Figure 4: Segmentation Option Format

 The Segmentation Option is to be included when the message content is
 segmented into multiple segments. Different segments of one message
 share the same Message ID. An illustration is provided in Figure 4.
 The fields of this TLV are:

 * Type: Generic option field which indicates a Segmentation Option.
 The Type value is to be assigned TBD1.

 * Length: Generic option field which indicates the length of this
 option. It is a fixed value of 4 octets for the Segmentation
 Option.

 * Segment Number: 15-bit value indicating the sequence number of the
 current segment. The first segment of a segmented message has a
 Segment Number value of 0.

 * L: is a flag to indicate whether the current segment is the last
 one of the message. When 0 is set, the current segment is not the
 last one. When 1 is set, the current segment is the last one,
 meaning that the total number of segments used to transport this
 message is the value of the current Segment Number + 1.

 An implementation of this specification SHOULD NOT rely on IP
 fragmentation by default to carry large messages. An implementation
 of this specification SHOULD either restrict the size of individual
 messages carried over this protocol, or support the segmentation
 option.

 When a message has multiple options and is segmented using the
 described mechanism, all the options MUST be present on the first
 segment ordered by the options Type. The rest of segmented messages
 MAY include all the options ordered by options type.

4.2. Private Encoding Option

 The space to describe private encodings in the MT field of the UDP-
 Notif header being limited, an option is provided to describe custom
 encodings. The fields of this option are as follows.

Zheng, et al. Expires 13 April 2024 [Page 9]

Internet-Draft unyte-udp-notif October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+--------------------------------
 | Type | Length | Variable length enc. descr.
 +---------------+---------------+--------------------------------

 Figure 5: Private Encoding Option Format

 * Type: Generic option field which indicates a Private Encoding
 Option. The Type value is to be assigned TBD2.

 * Length: Generic option field which indicates the length of this
 option. It is a variable value.

 * Enc. Descr: The description of the private encoding used for this
 message. The values to be used for such private encodings is left
 to be defined by the users of private encodings.

 This option SHOULD only be used when the S bit of the header is set,
 as providing a private encoding description for standard encodings is
 meaningless.

5. Applicability

 In this section, we provide an applicability statement for the
 proposed mechanism, following the recommendations of [RFC8085].

 The proposed mechanism falls in the category of UDP applications
 "designed for use within the network of a single network operator or
 on networks of an adjacent set of cooperating network operators, to
 be deployed in controlled environments", as defined in [RFC8085].
 Implementations of the proposed mechanism SHOULD thus follow the
 recommendations in place for such specific applications. In the
 following, we discuss recommendations on congestion control, message
 size guidelines, reliability considerations and security
 considerations.

 The main use case of the proposed mechanism is the collection of
 statistical metrics for accounting purposes, where potential loss is
 not a concern, but should however be reported (such as IPFIX Flow
 Records exported with UDP [RFC7011]). Such metrics are typically
 exported in a periodical subscription as described in Section 3.1 of
 [RFC8641].

Zheng, et al. Expires 13 April 2024 [Page 10]

Internet-Draft unyte-udp-notif October 2023

5.1. Congestion Control

 The proposed application falls into the category of applications
 performing transfer of large amounts of data. It is expected that
 the operator using the solution configures QoS on its related flows.
 As per [RFC8085], such applications MAY choose not to implement any
 form of congestion control, but follow the following principles.

 It is NOT RECOMMENDED to use the proposed mechanism over congestion-
 sensitive network paths. The only environments where UDP-Notif is
 expected to be used are managed networks. The deployments require
 that the network path has been explicitly provisioned to handle the
 traffic through traffic engineering mechanisms, such as rate limiting
 or capacity reservations.

 Implementation of the proposal SHOULD NOT push unlimited amounts of
 traffic by default, and SHOULD require the users to explicitly
 configure such a mode of operation.

 Burst mitigation through packet pacing is RECOMMENDED. Disabling
 burst mitigation SHOULD require the users to explicitly configure
 such a mode of operation.

 Applications SHOULD monitor packet losses and provide means to the
 user for retrieving information on such losses. The UDP-Notif
 Message ID can be used to deduce congestion based on packet loss
 detection. Hence the receiver can notify the Publisher to use a
 lower streaming rate. The interaction to control the streaming rate
 on the Publisher is out of the scope of this document.

5.2. Message Size

 [RFC8085] recommends not to rely on IP fragmentation for messages
 whose size result in IP packets exceeding the MTU along the path.
 The segmentation option of the current specification permits
 segmentation of the UDP Notif message content without relying on IP
 fragmentation. Implementation of the current specification SHOULD
 allow for the configuration of the MTU.

5.3. Reliability

 A receiver implementation for this protocol SHOULD deal with
 potential loss of packets carrying a part of segmented payload, by
 discarding packets that were received, but cannot be re-assembled as
 a complete message within a given amount of time. This time SHOULD
 be configurable.

Zheng, et al. Expires 13 April 2024 [Page 11]

Internet-Draft unyte-udp-notif October 2023

6. Secured layer for UDP-notif

 In open or unsecured networks, UDP-notif messages MUST be secured or
 encrypted. In this section, a mechanism using DTLS 1.3 to secure
 UDP-notif protocol is presented. The following sections defines the
 requirements for the implementation of the secured layer of DTLS for
 UDP-notif. No DTLS 1.3 extensions are defined in this document.

 The DTLS 1.3 protocol [RFC9147] is designed to meet the requirements
 of applications that need to secure datagram transport.
 Implementations using DTLS to secure UDP-notif messages MUST use DTLS
 1.3 protocol as defined in [RFC9147].

 When this security layer is used, the Publisher MUST always be a DTLS
 client, and the Receiver MUST always be a DTLS server. The Receivers
 MUST support accepting UDP-notif Messages on the specified UDP port,
 but MAY be configurable to listen on a different port. The Publisher
 MUST support sending UDP-notif messages to the specified UDP port,
 but MAY be configurable to send messages to a different port. The
 Publisher MAY use any source UDP port for transmitting messages.

6.1. Session lifecycle

6.1.1. DTLS Session Initiation

 The Publisher initiates a DTLS connection by sending a DTLS
 ClientHello to the Receiver. Implementations MAY support the denial
 of service countermeasures defined by DTLS 1.3 if a given deployment
 can ensure that DoS attacks are not a concern. When these
 countermeasures are used, the Receiver responds with a DTLS
 HelloRetryRequest containing a stateless cookie. The Publisher sends
 a second DTLS ClientHello message containing the received cookie.
 Details can be found in Section 5.1 of [RFC9147].

 When DTLS is implemented, the Publisher MUST NOT send any UDP-notif
 messages before the DTLS handshake has successfully completed. Early
 data mechanism (also known as 0-RTT data) as defined in [RFC9147]
 MUST NOT be used.

 Implementations of this security layer MUST support DTLS 1.3
 [RFC9147] and MUST support the mandatory to implement cipher suite
 TLS_AES_128_GCM_SHA256 and SHOULD implement TLS_AES_256_GCM_SHA384
 and TLS_CHACHA20_POLY1305_SHA256 cipher suites, as specified in TLS
 1.3 [RFC8446]. If additional cipher suites are supported, then
 implementations MUST NOT negotiate a cipher suite that employs NULL
 integrity or authentication algorithms.

Zheng, et al. Expires 13 April 2024 [Page 12]

Internet-Draft unyte-udp-notif October 2023

 Where confidentiality protection with DTLS is required,
 implementations must negotiate a cipher suite that employs a non-NULL
 encryption algorithm.

6.1.2. Publish Data

 When DTLS is used, all UDP-notif messages MUST be published as DTLS
 "application_data". It is possible that multiple UDP-notif messages
 are contained in one DTLS record, or that a publication message is
 transferred in multiple DTLS records. The application data is
 defined with the following ABNF [RFC5234] expression:

 APPLICATION-DATA = 1*UDP-NOTIF-FRAME

 UDP-NOTIF-FRAME = MSG-LEN SP UDP-NOTIF-MSG

 MSG-LEN = NONZERO-DIGIT *DIGIT

 SP = %d32

 NONZERO-DIGIT = %d49-57

 DIGIT = %d48 / NONZERO-DIGIT

 UDP-NOTIF-MSG is defined in Section 3.

 The Publisher SHOULD attempt to avoid IP fragmentation by using the
 Segmentation Option in the UDP-notif message.

6.1.3. Session termination

 A Publisher MUST close the associated DTLS connection if the
 connection is not expected to deliver any UDP-notif Messages later.
 It MUST send a DTLS close_notify alert before closing the connection.
 A Publisher (DTLS client) MAY choose to not wait for the Receiver’s
 close_notify alert and simply close the DTLS connection. Once the
 Receiver gets a close_notify from the Publisher, it MUST reply with a
 close_notify.

 When no data is received from a DTLS connection for a long time, the
 Receiver MAY close the connection. Implementations SHOULD set the
 timeout value to 10 minutes but application specific profiles MAY
 recommend shorter or longer values. The Receiver (DTLS server) MUST
 attempt to initiate an exchange of close_notify alerts with the
 Publisher before closing the connection. Receivers that are
 unprepared to receive any more data MAY close the connection after
 sending the close_notify alert.

Zheng, et al. Expires 13 April 2024 [Page 13]

Internet-Draft unyte-udp-notif October 2023

 Although closure alerts are a component of TLS and so of DTLS, they,
 like all alerts, are not retransmitted by DTLS and so may be lost
 over an unreliable network.

7. A YANG Data Model for Management of UDP-Notif

7.1. Generic grouping for UDP-based applications

 The "ietf-udp-client" module defines a generic "grouping" to
 configure a UDP client.

7.1.1. YANG Tree

 The following tree diagram [RFC8340] illustrates the "udp-client-
 grouping" grouping:

module: ietf-udp-client

 grouping udp-client-grouping:
 +-- remote-address inet:ip-address-no-zone
 +-- remote-port inet:port-number
 +-- dtls! {dtls13}?
 +-- client-identity!
 | +-- (auth-type)
 | +--:(certificate) {client-ident-x509-cert}?
 | | +-- certificate
 | | ...
 | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | +-- raw-private-key
 | | ...
 | +--:(tls12-psk)
 | | {client-ident-tls12-psk,not tlsc:client-ident-tls12-psk}?
 | | +-- tls12-psk
 | | ...
 | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | +-- tls13-epsk
 | ...
 +-- server-authentication
 | +-- ca-certs! {server-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | ...
 | +-- ee-certs! {server-auth-x509-cert}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?

Zheng, et al. Expires 13 April 2024 [Page 14]

Internet-Draft unyte-udp-notif October 2023

 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,certificates}?
 | | ...
 | +-- raw-public-keys! {server-auth-raw-public-key}?
 | | +-- (local-or-truststore)
 | | +--:(local) {local-definitions-supported}?
 | | | ...
 | | +--:(truststore)
 | | {central-truststore-supported,public-keys}?
 | | ...
 | +-- tls12-psks? empty
 | | {server-auth-tls12-psk,not tlsc:server-auth-tls12-psk}?
 | +-- tls13-epsks? empty {server-auth-tls13-epsk}?
 +-- hello-params {tlscmn:hello-params}?
 | +-- tls-versions
 | | +-- tls-version* identityref
 | +-- cipher-suites
 | +-- cipher-suite* identityref
 +-- keepalives {tls-client-keepalives}?
 +-- peer-allowed-to-send? empty
 +-- test-peer-aliveness!
 +-- max-wait? uint16
 +-- max-attempts? uint8

7.1.2. YANG Module

 The "ietf-udp-client" module defines a reusable "udp-client-grouping"
 grouping with the remote server IP address, remote port and a DTLS
 container to configure DTLS1.3 when DTLS encryption is supported.
 When configuring the DTLS layer, the grouping uses "tls-client-
 grouping" defined in [I-D.ietf-netconf-tls-client-server] to add DTLS
 1.3 parameters.

 <CODE BEGINS> file "ietf-udp-client@2023-05-08.yang"
 module ietf-udp-client {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-udp-client";
 prefix udpc;
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-tls-client {
 prefix tlsc;
 reference

Zheng, et al. Expires 13 April 2024 [Page 15]

Internet-Draft unyte-udp-notif October 2023

 "RFC TTTT: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng
 <mailto:alex.huang-feng@insa-lyon.fr>
 Pierre Francois
 <mailto:pierre.francois@insa-lyon.fr>
 Guangying Zheng
 <mailto:zhengguangying@huawei.com>
 Tianran Zhou
 <mailto:zhoutianran@huawei.com>
 Thomas Graf
 <mailto:thomas.graf@swisscom.com>
 Paolo Lucente
 <mailto:paolo@ntt.net>";

 description
 "Defines a generic grouping for UDP-based client applications.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Revised BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC
 itself for full legal notices.";

 revision 2023-05-08 {
 description
 "Initial revision";
 reference
 "RFC-to-be: UDP-based Transport for Configured Subscriptions";
 }

 /*
 * FEATURES
 */
 feature dtls13 {
 description

Zheng, et al. Expires 13 April 2024 [Page 16]

Internet-Draft unyte-udp-notif October 2023

 "This feature indicates that DTLS 1.3 encryption of UDP
 packets is supported.";
 }

 grouping udp-client-grouping {
 description
 "Provides a reusable grouping for configuring a UDP client.";

 leaf remote-address {
 type inet:ip-address-no-zone;
 mandatory true;
 description
 "IP address of the UDP client, which can be an
 IPv4 address or an IPV6 address.";
 }

 leaf remote-port {
 type inet:port-number;
 mandatory true;
 description
 "Port number of the UDP client.";
 }

 container dtls {
 if-feature dtls13;
 presence dtls;
 uses tlsc:tls-client-grouping {
 // Using tls-client-grouping without TLS1.2 parameters
 // allowing only DTLS 1.3
 refine "client-identity/auth-type/tls12-psk" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:client-ident-tls12-psk";
 }
 refine "server-authentication/tls12-psks" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:server-auth-tls12-psk";
 }
 }
 description
 "Container for configuring DTLS 1.3 parameters.";
 }
 }
 }
 <CODE ENDS>

Zheng, et al. Expires 13 April 2024 [Page 17]

Internet-Draft unyte-udp-notif October 2023

7.2. YANG to configure UDP-notif

 The YANG model described in Section 7.3 defines a new receiver
 instance for UDP-notif transport. When this transport is used, four
 new leaves and a dtls container allow configuring UDP-notif receiver
 parameters.

 module: ietf-udp-notif-transport

 augment /sn:subscriptions/snr:receiver-instances
 /snr:receiver-instance/snr:transport-type:
 +--:(udp-notif)
 +--rw udp-notif-receiver
 +--rw remote-address inet:ip-address-no-zone
 +--rw remote-port inet:port-number
 +--rw dtls! {dtls13}?
 | +--rw client-identity!
 | | +--rw (auth-type)
 | | +--:(certificate) {client-ident-x509-cert}?
 | | | ...
 | | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | | ...
 | | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | | ...
 | +--rw server-authentication
 | | +--rw ca-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw ee-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw raw-public-keys! {server-auth-raw-public-key}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw tls13-epsks? empty
 | | {server-auth-tls13-epsk}?
 | +--rw hello-params {tlscmn:hello-params}?
 | | +--rw tls-versions
 | | | +--rw tls-version* identityref
 | | +--rw cipher-suites
 | | +--rw cipher-suite* identityref
 | +--rw keepalives {tls-client-keepalives}?
 | +--rw peer-allowed-to-send? empty
 | +--rw test-peer-aliveness!
 | +--rw max-wait? uint16
 | +--rw max-attempts? uint8
 +--rw enable-segmentation? boolean {segmentation}?
 +--rw max-segment-size? uint32 {segmentation}?

Zheng, et al. Expires 13 April 2024 [Page 18]

Internet-Draft unyte-udp-notif October 2023

7.3. YANG Module

 This YANG module is used to configure, on a publisher, a receiver
 willing to consume notification messages. This module augments the
 "ietf-subscribed-notif-receivers" module to define a UDP-notif
 transport receiver. The grouping "udp-notif-receiver-grouping"
 defines the necessary parameters to configure the transport defined
 in this document using the generic "udp-client-grouping" grouping.

 <CODE BEGINS> file "ietf-udp-notif-transport@2023-05-08.yang"
 module ietf-udp-notif-transport {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport";
 prefix unt;
 import ietf-subscribed-notifications {
 prefix sn;
 reference
 "RFC 8639: Subscription to YANG Notifications";
 }
 import ietf-subscribed-notif-receivers {
 prefix snr;
 reference
 "RFC YYYY: An HTTPS-based Transport for
 Configured Subscriptions";
 }
 import ietf-udp-client {
 prefix udpc;
 reference
 "RFC-to-be: UDP-based Transport for Configured Subscriptions";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Authors: Guangying Zheng
 <mailto:zhengguangying@huawei.com>
 Tianran Zhou
 <mailto:zhoutianran@huawei.com>
 Thomas Graf
 <mailto:thomas.graf@swisscom.com>
 Pierre Francois
 <mailto:pierre.francois@insa-lyon.fr>
 Alex Huang Feng
 <mailto:alex.huang-feng@insa-lyon.fr>
 Paolo Lucente

Zheng, et al. Expires 13 April 2024 [Page 19]

Internet-Draft unyte-udp-notif October 2023

 <mailto:paolo@ntt.net>";

 description
 "Defines UDP-Notif as a supported transport for subscribed
 event notifications.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Revised BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC
 itself for full legal notices.";

 revision 2023-05-08 {
 description
 "Initial revision";
 reference
 "RFC-to-be: UDP-based Transport for Configured Subscriptions";
 }

 /*
 * FEATURES
 */
 feature encode-cbor {
 description
 "This feature indicates that CBOR encoding of notification
 messages is supported.";
 }
 feature segmentation {
 description
 "This feature indicates segmentation of notification messages
 is supported.";
 }

 /*
 * IDENTITIES
 */
 identity udp-notif {
 base sn:transport;
 description
 "UDP-Notif is used as transport for notification messages
 and state change notifications.";
 }

Zheng, et al. Expires 13 April 2024 [Page 20]

Internet-Draft unyte-udp-notif October 2023

 identity encode-cbor {
 base sn:encoding;
 description
 "Encode data using CBOR as described in RFC 9254.";
 reference
 "RFC 9254: CBOR Encoding of Data Modeled with YANG";
 }

 grouping udp-notif-receiver-grouping {
 description
 "Provides a reusable description of a UDP-Notif target
 receiver.";

 uses udpc:udp-client-grouping;

 leaf enable-segmentation {
 if-feature segmentation;
 type boolean;
 default false;
 description
 "The switch for the segmentation feature. When disabled, the
 publisher will not allow fragment for a very large data";
 }

 leaf max-segment-size {
 when "../enable-segmentation = ’true’";
 if-feature segmentation;
 type uint32;
 description
 "UDP-Notif provides a configurable max-segment-size to
 control the size of each segment (UDP-Notif header, with
 options, included).";
 }
 }

 augment "/sn:subscriptions/snr:receiver-instances/" +
 "snr:receiver-instance/snr:transport-type" {
 case udp-notif {
 container udp-notif-receiver {
 description
 "The UDP-notif receiver to send notifications to.";
 uses udp-notif-receiver-grouping;
 }
 }
 description
 "Augment the transport-type choice to include the ’udp-notif’
 transport.";
 }

Zheng, et al. Expires 13 April 2024 [Page 21]

Internet-Draft unyte-udp-notif October 2023

 }
 <CODE ENDS>

8. IANA Considerations

 This document describes several new registries, the URIs from IETF
 XML Registry and the registration of a two new YANG module names.

8.1. IANA registries

 This document is creating 3 registries called "UDP-notif media
 types", "UDP-notif option types", and "UDP-notif header version"
 under the new group "UDP-notif protocol". The registration procedure
 is made using the Standards Action process defined in [RFC8126].

 The first requested registry is the following:

 Registry Name: UDP-notif media types
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 15

 These are the initial registrations for "UDP-notif media types":

 Value: 0
 Description: Reserved
 Reference: RFC-to-be

 Value: 1
 Description: media type application/yang-data+json
 Reference: <xref target="RFC8040"/>

 Value: 2
 Description: media type application/yang-data+xml
 Reference: <xref target="RFC8040"/>

 Value: 3
 Description: media type application/yang-data+cbor
 Reference: <xref target="RFC9254"/>

 The second requested registry is the following:

 Registry Name: UDP-notif option types
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 255

 These are the initial registrations for "UDP-notif options types":

Zheng, et al. Expires 13 April 2024 [Page 22]

Internet-Draft unyte-udp-notif October 2023

 Value: 0
 Description: Reserved
 Reference: RFC-to-be

 Value: TBD1 (suggested value: 1)
 Description: Segmentation Option
 Reference: RFC-to-be

 Value: TBD2 (suggested value: 2)
 Description: Private Encoding Option
 Reference: RFC-to-be

 The third requested registry is the following:

 Registry Name: UDP-notif header version
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 7

 These are the initial registrations for "UDP-notif header version":

 Value: 0
 Description: UDP based Publication Channel for Streaming Telemetry
 Reference: draft-ietf-netconf-udp-pub-channel-05

 Value: 1
 Description: UDP-based Transport for Configured Subscriptions.
 Reference: RFC-to-be

8.2. URI

 IANA is also requested to assign a two new URI from the IETF XML
 Registry [RFC3688]. The following two URIs are suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-client
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

8.3. YANG module name

 This document also requests a two new YANG module names in the YANG
 Module Names registry [RFC8342] with the following suggestions:

Zheng, et al. Expires 13 April 2024 [Page 23]

Internet-Draft unyte-udp-notif October 2023

 name: ietf-udp-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-client
 prefix: udpc
 reference: RFC-to-be

 name: ietf-udp-notif
 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport
 prefix: unt
 reference: RFC-to-be

9. Implementation Status

 Note to the RFC-Editor: Please remove this section before publishing.

9.1. Open Source Publisher

 INSA Lyon implemented this document for a YANG Push publisher in an
 example implementation.

 The open source code can be obtained here: [INSA-Lyon-Publisher].

9.2. Open Source Receiver Library

 INSA Lyon implemented this document for a YANG Push receiver as a
 library.

 The open source code can be obtained here: [INSA-Lyon-Receiver].

9.3. Pmacct Data Collection

 The open source YANG push receiver library has been integrated into
 the Pmacct open source Network Telemetry data collection.

9.4. Huawei VRP

 Huawei implemented this document for a YANG Push publisher in their
 VRP platform.

10. Security Considerations

 [RFC8085] states that "UDP applications that need to protect their
 communications against eavesdropping, tampering, or message forgery
 SHOULD employ end-to-end security services provided by other IETF
 protocols". As mentioned above, the proposed mechanism is designed
 to be used in controlled environments, as defined in [RFC8085] also
 known as "limited domains", as defined in [RFC8799]. Thus, a
 security layer is not necessary required. Nevertheless, a DTLS layer
 MUST be implemented in open or unsecured networks. A specification

Zheng, et al. Expires 13 April 2024 [Page 24]

Internet-Draft unyte-udp-notif October 2023

 of udp-notif using DTLS is presented in Section 6.

11. Acknowledgements

 The authors of this documents would like to thank Alexander Clemm,
 Benoit Claise, Eric Voit, Huiyang Yang, Kent Watsen, Mahesh
 Jethanandani, Marco Tollini, Hannes Tschofenig, Rob Wilton, Sean
 Turner, Stephane Frenot, Timothy Carey, Tim Jenkins, Tom Petch and
 Yunan Gu for their constructive suggestions for improving this
 document.

12. References

12.1. Normative References

 [I-D.ietf-netconf-distributed-notif]
 Zhou, T., Zheng, G., Voit, E., Graf, T., and P. Francois,
 "Subscription to Distributed Notifications", Work in
 Progress, Internet-Draft, draft-ietf-netconf-distributed-
 notif-08, 6 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 distributed-notif-08>.

 [I-D.ietf-netconf-https-notif]
 Jethanandani, M. and K. Watsen, "An HTTPS-based Transport
 for YANG Notifications", Work in Progress, Internet-Draft,
 draft-ietf-netconf-https-notif-13, 4 November 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 https-notif-13>.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K., "YANG Groupings for TLS Clients and TLS
 Servers", Work in Progress, Internet-Draft, draft-ietf-
 netconf-tls-client-server-29, 18 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 tls-client-server-29>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Zheng, et al. Expires 13 April 2024 [Page 25]

Internet-Draft unyte-udp-notif October 2023

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8640] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Dynamic Subscription to YANG Events
 and Datastores over NETCONF", RFC 8640,
 DOI 10.17487/RFC8640, September 2019,
 <https://www.rfc-editor.org/info/rfc8640>.

 [RFC8650] Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and
 A. Bierman, "Dynamic Subscription to YANG Events and
 Datastores over RESTCONF", RFC 8650, DOI 10.17487/RFC8650,
 November 2019, <https://www.rfc-editor.org/info/rfc8650>.

Zheng, et al. Expires 13 April 2024 [Page 26]

Internet-Draft unyte-udp-notif October 2023

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

 [RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
 C., and M. Richardson, "Encoding of Data Modeled with YANG
 in the Concise Binary Object Representation (CBOR)",
 RFC 9254, DOI 10.17487/RFC9254, July 2022,
 <https://www.rfc-editor.org/info/rfc9254>.

12.2. Informative References

 [I-D.ahuang-netconf-notif-yang]
 Feng, A. H., Francois, P., Graf, T., and B. Claise, "YANG
 model for NETCONF Event Notifications", Work in Progress,
 Internet-Draft, draft-ahuang-netconf-notif-yang-02, 23
 July 2023, <https://datatracker.ietf.org/doc/html/draft-
 ahuang-netconf-notif-yang-02>.

 [I-D.ietf-netconf-notification-messages]
 Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.
 Clemm, "Notification Message Headers and Bundles", Work in
 Progress, Internet-Draft, draft-ietf-netconf-notification-
 messages-08, 17 November 2019,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 notification-messages-08>.

 [INSA-Lyon-Publisher]
 "INSA Lyon, YANG Push publisher example implementation",
 <https://github.com/network-analytics/udp-notif-scapy>.

 [INSA-Lyon-Receiver]
 "INSA Lyon, YANG Push receiver library implementation",
 <https://github.com/network-analytics/udp-notif-
 c-collector>.

 [Paolo-Lucente-Pmacct]
 "Paolo Lucente, Pmacct open source Network Telemetry Data
 Collection", <https://github.com/pmacct/pmacct>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

Zheng, et al. Expires 13 April 2024 [Page 27]

Internet-Draft unyte-udp-notif October 2023

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC8799] Carpenter, B. and B. Liu, "Limited Domains and Internet
 Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,
 <https://www.rfc-editor.org/info/rfc8799>.

Appendix A. UDP-notif Examples

 This non-normative section shows two examples of how the the "ietf-
 udp-notif-transport" YANG module can be used to configure a [RFC8639]
 based publisher to send notifications to a receiver and an example of
 a YANG Push notification message using UDP-notif transport protocol.

A.1. Configuration for UDP-notif transport with DTLS disabled

 This example shows how UDP-notif can be configured without DTLS
 encryption.

Zheng, et al. Expires 13 April 2024 [Page 28]

Internet-Draft unyte-udp-notif October 2023

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\
 notifications">
 <subscription>
 <id>6666</id>
 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\
 ter>
 <stream>some-stream</stream>
 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\
 if-transport">unt:udp-notif</transport>
 <encoding>encode-json</encoding>
 <receivers>
 <receiver>
 <name>subscription-specific-receiver-def</name>
 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\
 ietf-subscribed-notif-receivers">global-udp-notif-receiver-def</rece\
 iver-instance-ref>
 </receiver>
 </receivers>
 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <period>6000</period>
 </periodic>
 </subscription>
 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\
 cribed-notif-receivers">
 <receiver-instance>
 <name>global-udp-notif-receiver-def</name>
 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\
 udp-notif-transport">
 <remote-address>192.0.5.1</remote-address>
 <remote-port>12345</remote-port>
 <enable-segmentation>false</enable-segmentation>
 <max-segment-size/>
 </udp-notif-receiver>
 </receiver-instance>
 </receiver-instances>
 </subscriptions>
 </config>

A.2. Configuration for UDP-notif transport with DTLS enabled

 This example shows how UDP-notif can be configured with DTLS
 encryption.

Zheng, et al. Expires 13 April 2024 [Page 29]

Internet-Draft unyte-udp-notif October 2023

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\
 notifications">
 <subscription>
 <id>6666</id>
 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\
 ter>
 <stream>some-stream</stream>
 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\
 if-transport">unt:udp-notif</transport>
 <encoding>encode-json</encoding>
 <receivers>
 <receiver>
 <name>subscription-specific-receiver-def</name>
 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\
 ietf-subscribed-notif-receivers">global-udp-notif-receiver-dtls-def<\
 /receiver-instance-ref>
 </receiver>
 </receivers>
 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <period>6000</period>
 </periodic>
 </subscription>
 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\
 cribed-notif-receivers">
 <receiver-instance>
 <name>global-udp-notif-receiver-dtls-def</name>
 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\
 udp-notif-transport">
 <remote-address>192.0.5.1</remote-address>
 <remote-port>12345</remote-port>
 <enable-segmentation>false</enable-segmentation>
 <max-segment-size/>
 <dtls>
 <client-identity>
 <tls13-epsk>
 <local-definition>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-key>BASE64VALUE=</cleartext-key>
 </local-definition>
 <external-identity>example_external_id</external-ide\
 ntity>
 <hash>sha-256</hash>
 <context>example_context_string</context>
 <target-protocol>8443</target-protocol>

Zheng, et al. Expires 13 April 2024 [Page 30]

Internet-Draft unyte-udp-notif October 2023

 <target-kdf>12345</target-kdf>
 </tls13-epsk>
 </client-identity>
 <server-authentication>
 <ca-certs>
 <local-definition>
 <certificate>
 <name>Server Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Server Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </local-definition>
 </ca-certs>
 <ee-certs>
 <local-definition>
 <certificate>
 <name>My Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>My Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </local-definition>
 </ee-certs>
 <raw-public-keys>
 <local-definition>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:subject-public-key-info-fo\
 rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:subject-public-key-info-fo\
 rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </local-definition>
 </raw-public-keys>
 <tls13-epsks/>
 </server-authentication>
 <keepalives>
 <test-peer-aliveness>

Zheng, et al. Expires 13 April 2024 [Page 31]

Internet-Draft unyte-udp-notif October 2023

 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>
 </dtls>
 </udp-notif-receiver>
 </receiver-instance>
 </receiver-instances>
 </subscriptions>
 </config>

A.3. YANG Push message with UDP-notif transport protocol

 This example shows how UDP-notif is used as a transport protocol to
 send a "push-update" notification [RFC8641] encoded in JSON
 [RFC7951].

 Assuming the publisher needs to send the JSON payload showed in
 Figure 6, the UDP-notif transport is encoded following the Figure 7.
 The UDP-notif message is then encapsulated in a UDP frame.

 {
 "ietf-notification:notification": {
 "eventTime": "2023-02-10T08:00:11.22Z",
 "ietf-yang-push:push-update": {
 "id": 1011,
 "datastore-contents": {
 "ietf-interfaces:interfaces": [
 {
 "interface": {
 "name": "eth0",
 "oper-status": "up"
 }
 }
]
 }
 }
 }
 }

 Figure 6: JSON Payload to be sent

Zheng, et al. Expires 13 April 2024 [Page 32]

Internet-Draft unyte-udp-notif October 2023

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-----+-+-------+---------------+-------------------------------+
 |Ver=1|0| MT=1 | Header_Len=12 | Message_Length=230 |
 +-----+-+-------+---------------+-------------------------------+
 | Message Publisher ID=2 |
 +---+
 | Message ID=1563 |
 +---+
 | YANG Push JSON payload (Len=218 octets) |
 |{"ietf-notification:notification":{"eventTime":"2023-02-10T08:0|
 |0:11.22Z","ietf-yang-push:push-update":{"id":1011,"datastore-co|
 |ntents":{"ietf-interfaces:interfaces":[{"interface":{"name":"et|
 |h0","oper-status":"up"}}]}}}} |
 +---+

 Figure 7: UDP-notif transport message

Authors’ Addresses

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing
 Jiangsu,
 China
 Email: zhengguangying@huawei.com

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China
 Email: zhoutianran@huawei.com

 Thomas Graf
 Swisscom
 Binzring 17
 CH- Zuerich 8045
 Switzerland
 Email: thomas.graf@swisscom.com

Zheng, et al. Expires 13 April 2024 [Page 33]

Internet-Draft unyte-udp-notif October 2023

 Pierre Francois
 INSA-Lyon
 Lyon
 France
 Email: pierre.francois@insa-lyon.fr

 Alex Huang Feng
 INSA-Lyon
 Lyon
 France
 Email: alex.huang-feng@insa-lyon.fr

 Paolo Lucente
 NTT
 Siriusdreef 70-72
 Hoofddorp, WT 2132
 Netherlands
 Email: paolo@ntt.net

Zheng, et al. Expires 13 April 2024 [Page 34]

Network Working Group K. Larsson

Internet-Draft Deutsche Telekom

Intended status: Standards Track 18 October 2023

Expires: 20 April 2024

 Mapping YANG Data to Label-Set Time Series

 draft-kll-yang-label-tsdb-00

Abstract

 This document proposes a standardized approach for representing YANG-

 modeled configuration and state data, for storage in Time Series

 Databases (TSDBs) that identify time series using a label-set. It

 outlines procedures for translating YANG data representations to fit

 within the label-centric structures of TSDBs and vice versa. This

 mapping ensures clear and efficient storage and querying of YANG-

 modeled data in TSDBs.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at

 https://github.com/plajjan/draft-kll-yang-label-tsdb.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 20 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Larsson Expires 20 April 2024 [Page 1]

Internet-Draft yang-label-tsdb October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Specification of the Mapping Procedure 3

 2.1. Example: Packet Counters in IETF Interfaces Model 3

 2.2. Mapping values . 4

 2.3. Choice . 4

 2.4. Host / device name 4

 3. Querying YANG modeled time series data 5

 3.1. 1. *Basic Queries* 5

 3.2. 2. *Filtering by Labels* 5

 3.3. 3. *Time-based Queries* 6

 3.4. 4. *Aggregations* . 6

 3.5. 5. *Combining Filters* 6

 3.6. 6. *Querying Enumeration Types* 6

 4. Requirements on time series databases 7

 4.1. Support for String Values 7

 4.2. Sufficient Path Length 7

 4.3. High Cardinality . 8

 5. Normative References . 8

 Author’s Address . 8

1. Introduction

 The aim of this document is to define rules for representing

 configuration and state data defined using the YANG data modeling

 language [RFC7950] as time series using a label-centric model.

 The majority of modern Time Series Databases (TSDBs) employ a label-

 centric model. In this structure, time series are identified by a

 set of labels, each consisting of a key-value pair. These labels

 facilitate efficient querying, aggregation, and filtering of data

 over time intervals. Such a model contrasts with the hierarchical

 nature of YANG-modeled data. The challenge, therefore, lies in

 ensuring that YANG-defined data, with its inherent structure and

 depth, can be seamlessly integrated into the flat, label-based

 structure of most contemporary TSDBs.

Larsson Expires 20 April 2024 [Page 2]

Internet-Draft yang-label-tsdb October 2023

 This document seeks to bridge this structural gap, laying out rules

 and guidelines to ensure that YANG-modeled configuration and state

 data can be effectively stored, queried, and analyzed within label-

 centric TSDBs.

2. Specification of the Mapping Procedure

 Instances of YANG data nodes are mapped to metrics. Only nodes that

 carry a value are mapped. This includes leafs and presence

 containers. The hierarchical path to a value, including non-presence

 containers and lists, form the path that is used as the name of the

 metric. The path is formed by joining YANG data nodes using _.

 Special symbols, e.g. -, in node names are replaced with _.

 List keys are mapped into labels. The path to the list key is

 transformed in the same way as the primary name of the metric.

 Compound keys have each key part as a separate label.

2.1. Example: Packet Counters in IETF Interfaces Model

 Consider the in-unicast-pkts leaf from the IETF interfaces model that

 captures the number of incoming unicast packets on an interface:

 Original YANG Instance-Identifier: yang

 /interfaces/interface[name=’eth0’]/statistics/in-unicast-pkts

 Following the mapping rules defined:

 1. The path components, including containers and list names, are

 transformed into the metric name by joining the node names with

 _. Special symbols, e.g. - are replaced with _.

 Resulting Metric Name:

 interfaces_interface_statistics_in_unicast_pkts

 1. The list key "predicate", which in this case is the interface

 name (eth0), is extracted and stored as a separate label. The

 label key represents the complete path to the key.

 Resulting Label: interfaces_interface_name = eth0

 1. The leaf value, which represents the actual packet counter,

 remains unchanged and is directly mapped to the value in the time

 series database.

 For instance, if the packet counter reads 5,432,100 packets:

 Value: 5432100

Larsson Expires 20 April 2024 [Page 3]

Internet-Draft yang-label-tsdb October 2023

 1. As part of the standard labels, a server identification string is

 also included. A typical choice of identifier might be the

 hostname. For this example, let’s assume the device name is

 router-01:

 Label: host = router-01

 Final Mapping in the TSDB:

 * Metric: interfaces_interface_statistics_in_unicast_pkts

 * Value: 5432100

 * Labels:

 - host = router-01

 - interfaces_interface_name = eth0

2.2. Mapping values

 Leaf values are mapped based on their intrinsic type:

 * All integer types are mapped to integers and retain their native

 representation

 - some implementations only support floats for numeric values

 * decimal64 values are mapped to floats and the value should be

 rounded and truncated as to minimize the loss of information

 * Enumeration types are mapped using their string representation.

 * String types remain unchanged.

2.3. Choice

 Choice constructs from YANG are disregarded and not enforced during

 the mapping process. Given the temporal nature of TSDBs, where data

 spans across time, different choice branches could be active in a

 single data set, rendering validation and storage restrictions

 impractical.

2.4. Host / device name

 There is an implicit host label identifying the server, typically set

 to the name of the host originating the time series data.

Larsson Expires 20 April 2024 [Page 4]

Internet-Draft yang-label-tsdb October 2023

 Instance data retrieved from YANG-based servers do not generally

 identify the server it originates from. As a time series database is

 likely going to contain data from multiple servers, the host label is

 used to identify the source of the data.

3. Querying YANG modeled time series data

 The process of storing YANG-modeled data in label-centric TSDBs, as

 defined in the previous sections, inherently structures the data in a

 way that leverages the querying capabilities of modern TSDBs. This

 chapter provides guidelines on how to construct queries to retrieve

 this data effectively.

3.1. 1. *Basic Queries*

 To retrieve all data points related to incoming unicast packets from

 the IETF interfaces model:

 * *InfluxQL*: sql SELECT * FROM

 interfaces_interface_statistics_in_unicast_pkts

 * *PromQL*: promql interfaces_interface_statistics_in_unicast_pkts

3.2. 2. *Filtering by Labels*

 To retrieve incoming unicast packets specifically for the interface

 eth0:

 * *InfluxQL*: sql SELECT * FROM

 interfaces_interface_statistics_in_unicast_pkts WHERE

 interfaces_interface_name = ’eth0’

 * *PromQL*: promql interfaces_interface_statistics_in_unicast_pkts{i

 nterfaces_interface_name="eth0"}

 Similarly, to filter by device / host name:

 * *InfluxQL*: sql SELECT * FROM

 interfaces_interface_statistics_in_unicast_pkts WHERE host =

 ’router-01’

 * *PromQL*: promql

 interfaces_interface_statistics_in_unicast_pkts{host="router-01"}

Larsson Expires 20 April 2024 [Page 5]

Internet-Draft yang-label-tsdb October 2023

3.3. 3. *Time-based Queries*

 * *InfluxQL*: sql SELECT * FROM

 interfaces_interface_statistics_in_unicast_pkts WHERE time > now()

 - 24h

 Prometheus fetches data based on the configured scrape interval and

 retention policies, so time-based filters in PromQL often center

 around the range vectors. For data over the last 24 hours:

 * *PromQL*: promql

 interfaces_interface_statistics_in_unicast_pkts[24h]

3.4. 4. *Aggregations*

 To get the average number of incoming unicast packets over the last

 hour:

 * *InfluxQL*: sql SELECT MEAN(value) FROM

 interfaces_interface_statistics_in_unicast_pkts WHERE time > now()

 - 1h GROUP BY time(10m)

 * *PromQL*: promql

 avg_over_time(interfaces_interface_statistics_in_unicast_pkts[1h])

3.5. 5. *Combining Filters*

 To retrieve the sum of incoming unicast packets for eth0 on router-01

 over the last day:

 * *InfluxQL*: sql SELECT SUM(value) FROM

 interfaces_interface_statistics_in_unicast_pkts WHERE

 interfaces_interface_name = ’eth0’ AND host = ’router-01’ AND time

 > now() - 24h

 * *PromQL*: promql sum(interfaces_interface_statistics_in_unicast_pk

 ts{interfaces_interface_name="eth0", host="router-01"})[24h]

3.6. 6. *Querying Enumeration Types*

 In YANG models, enumerations are defined types with a set of named

 values. The oper-status leaf in the IETF interfaces model is an

 example of such an enumeration, representing the operational status

 of an interface.

 For instance, the oper-status might have values such as up, down, or

 testing.

Larsson Expires 20 April 2024 [Page 6]

Internet-Draft yang-label-tsdb October 2023

 To query interfaces that have an oper-status of up:

 * *InfluxQL*: sql SELECT * FROM interfaces_interface_oper_status

 WHERE value = ’up’

 * *PromQL*: promql interfaces_interface_oper_status{value="up"}

 Similarly, to filter interfaces with oper-status of down:

 * *InfluxQL*: sql SELECT * FROM interfaces_interface_oper_status

 WHERE value = ’down’

 * *PromQL*: promql interfaces_interface_oper_status{value="down"}

 This approach allows us to effectively query interfaces based on

 their operational status, leveraging the enumeration mapping within

 the TSDB.

4. Requirements on time series databases

 This document specifies a mapping to a conceptual representation, not

 a particular concrete interface. To effectively support the mapping

 of YANG-modeled data into a label-centric model, certain requirements

 must be met by the Time Series Databases (TSDBs). These requirements

 ensure that the data is stored and retrieved in a consistent and

 efficient manner.

4.1. Support for String Values

 Several YANG leaf types carry string values, including the string

 type itself and all its descendants as well as enumerations which are

 saved using their string representation.

 The chosen TSDB must support the storage and querying of string

 values. Not all TSDBs inherently offer this capability, and thus,

 it’s imperative to ensure compatibility.

4.2. Sufficient Path Length

 YANG data nodes, especially when representing deep hierarchical

 structures, can result in long paths. When transformed into metric

 names or labels within the TSDB, these paths might exceed typical

 character limits imposed by some databases. It’s essential for the

 TSDB to accommodate these potentially long names to ensure data

 fidelity and avoid truncation or loss of information.

Larsson Expires 20 April 2024 [Page 7]

Internet-Draft yang-label-tsdb October 2023

4.3. High Cardinality

 Given the possibility of numerous unique label combinations

 (especially with dynamic values like interface names, device names,

 etc.), the chosen TSDB should handle high cardinality efficiently.

 High cardinality can impact database performance and query times, so

 it’s essential for the TSDB to have mechanisms to manage this

 efficiently.

5. Normative References

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

Author’s Address

 Kristian Larsson

 Deutsche Telekom

 Email: kristian@spritelink.net

Larsson Expires 20 April 2024 [Page 8]

NETMOD J. Lindblad
Internet-Draft Cisco
Intended status: Standards Track 20 October 2023
Expires: 22 April 2024

Philatelist, YANG-based collection and aggregation framework integrating
 Telemetry data and Time Series Databases
 draft-lindblad-tlm-philatelist-00

Abstract

 Timestamped telemetry data is collected en masse today. Mature tools
 are typically used, but the data is often collected in an ad hoc
 manner. While the dashboard graphs look great, the resulting data is
 often of questionable quality, not well defined, and hard to compare
 with seemingly similar data from other organizations.

 This document proposes a standard, extensible, cross domain framework
 for collecting and aggregating timestamped telemetry data in a way
 that combines YANG, metadata and Time Series Databases to produce
 more dependable and comparable results.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://janlindblad.github.io/netmod-tlm-philatelist/draft-lindblad-
 tlm-philatelist.html. Status information for this document may be
 found at https://datatracker.ietf.org/doc/draft-lindblad-tlm-
 philatelist/.

 Source for this draft and an issue tracker can be found at
 https://github.com/janlindblad/netmod-tlm-philatelist.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Lindblad Expires 22 April 2024 [Page 1]

Internet-Draft Philatelist October 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. The Problem . 3
 1.2. The Solution . 3
 1.3. The Philatelist Name 4
 2. Conventions and Definitions 4
 3. Architecure Overview . 5
 3.1. The Provider Component 7
 3.2. The Collector Component 8
 3.3. The Processor and Aggregator Components 10
 4. YANG-based Telemetry Outlook 13
 5. YANG Modules . 13
 5.1. Base types module for Philatelist 13
 5.2. Provider interface module for Philatelist 21
 5.3. Collector interface module for Philatelist 23
 5.4. Aggregator interface module for Philatelist 27
 6. Security Considerations 30
 7. IANA Considerations . 30
 8. References . 30
 8.1. Normative References 30
 8.2. Informative References 31
 Acknowledgments . 31
 Author’s Address . 31

1. Introduction

Lindblad Expires 22 April 2024 [Page 2]

Internet-Draft Philatelist October 2023

1.1. The Problem

 Many organizations today are collecting large amounts of telemetry
 data from their networks and data centers for a variety of purposes.
 Much (most?) of this data is funneled into a Time Series Database
 (TSDB) for display in a dashboard or further (AI-backed) processing
 and decision making.

 While this data collection is often handled using standard tools,
 there generally seems to be little commonality when it comes to what
 is meaured, how the data is aggregated, or definitions of the
 measured quantities (if any).

 Data science issues like adding overlapping quantities, adding
 quantities of different units of measurement, or quantities with
 different scopes, are likely common. Such errors are hard to detect
 given the ad hoc nature of the collection. This often leads to
 uncertainty regarding the quality of the conclusions drawn from the
 collected data.

1.2. The Solution

 The Philatelist framework proposes to standardize the collection,
 definitions of the quantities measured and meta data handling to
 provide a robust ground layer for telemetry collection. The
 architecture defines a few interfaces, but allows great freedom in
 the implementations with its plug-in architecture. This allows
 flexibility enough that any kind of quantitiy can be measured, any
 kind of collection protocol and mechanism employed, and the data
 flows aggregated using any kind of operation.

 To do this, YANG is used both to describe the quantities being
 measured, as well as act as the framework for the metadata
 management. Note that the usa of YANG here does not limit the
 architecture to traditional YANG-based transport protocols. YANG is
 used to describe the data, regardless of which format it arrives in.

 Initially developed in context of the Power and Energy Efficiency
 work (POWEFF), we realized both the potential and the need for this
 collection and aggregation architecture to become a general framework
 for collection of a variety of metrics.

 There is not much point in knowing the "cost side" of a running
 system (as in energy consumption or CO2-emissions) if that cannot be
 weighed against the "value side" delivered by the system (as in
 transported bytes, VPN connections, music streaming hours, or number
 of cat videos, etc.), which means traditional performance metrics
 will play an equally important role in the collection.

Lindblad Expires 22 April 2024 [Page 3]

Internet-Draft Philatelist October 2023

 In this initial version, we have done nothing to pull the proposed
 YANG modules out of its POWEFF roots and generalize it for general
 telemetry. We believe the ideas and merits of this framework
 architecture will be apparent nonetheless in this first version. For
 the next version, we certainly need to generalize the quantities
 measured and rename the YANG modules and node names.

1.3. The Philatelist Name

 This specification is about a framework for collection, aggregation
 and interpretation of timestamped telemetry data. The definition of
 "philatelist" seems close enough.

 1. philatelist

 noun. [’flætlst’] a collector and student of postage stamps.

 Synonyms
 - collector
 - aggregator

 Figure 1: Source: https://www.synonym.com/synonyms/philatelist

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology defined in [RFC7950].

 In addition, this document defines the following terms:

 TSDB Time Series Database.

 Sensor An entity in a system that delivers a snapshot value of some
 quantity pertaining to the system. Sensors are identified by
 their Sensor Path.

 Sensor Path A textual representation of the sensor’s address within
 the system.

Lindblad Expires 22 April 2024 [Page 4]

Internet-Draft Philatelist October 2023

3. Architecure Overview

 The deployment of a Philatelist framework consists of a collection of
 plug-in compomnents with well defined interfaces. Here is an example
 of a deployment. Each box is numbered in the lower right for easy
 reference.

 +-----------------+
 | USER INTERFACE |
 | Dashboard |
 | |
 +--------------11-+
 |
 +-----------------+
 | PROCESSOR |
 | Recommendation |
 | Engine |
 +--------------21-+
 |
 +-----------------+
 | AGGREGATOR |
 | Data Center |
 +--------------31-+
 |
 +---------------+-------+-------+--------------+
 | | | |
 +------------+ +------------+ +------------+ +------------+
 | PROCESSOR | | AGGREGATOR | | AGGREGATOR | | AGGREGATOR |
 | Normalizer | | Network | | Storage | | Compute |
 +---------41-+ +---------42-+ +---------43-+ +---------44-+
 | | |\ |\
 +------------+ | +------+------------+ +------------+------+
 | COLLECTOR | | | YANG | COLLECTOR | | COLLECTOR | YANG |
 | Cooling | | +---52-+ Storage 1 | | Compute 1 +---55-+
 +---------51-+ | +---------53-+ +---------54-+
 | | \ Storage 2 \ \ Compute 2 \
 +------------+ | +------------+ +------------+
 | PROVIDER | | \ Storage N \ \ Compute N \
 |Utility Bill| | +------------+ +------------+
 +---------61-+ |
 +--------------+
 | |
 +------------+ +------------+
 | PROCESSOR | | COLLECTOR |
 | Normalizer | | Routers |
 +---------71-+ +---------72-+
 | |\
 +------------+ +------------+

Lindblad Expires 22 April 2024 [Page 5]

Internet-Draft Philatelist October 2023

 | COLLECTOR | | PROVIDER |
 | Firewall | | Router 1 |
 +---------81-+ +---------82-+
 | \ Router 2 \
 +------------+ +------------+
 | PROVIDER | \ Router N \
 | Firewall | +------------+
 +---------91-+

 Figure 2: Example Philatelist component deployment.

 Each component in the above diagram, represents a logical function.
 Many boxes could be running within a single server, or they could be
 fully distrubuted, or anything in between.

 Provider components (61, 82, 91) are running on a telemetry source
 system that supports a YANG-based telemetry data server. The
 telemetry data flows from the telemetry source system to a Time
 Series Database (TSDB).

 Collector components (51, 72, 81) ensure the Providers are programmed
 properly to deliver the telemetry data to the TSDB designated by the
 collector. In some cases this flow may be direct from the source to
 the TSDB, in other cases, it may be going through the collector. In
 some cases the collector may be polling the source, in others it may
 have set up an automatic, periodic subscription.

 Many telemetry source systems will not have any on-board YANG-based
 telemetry server. Such servers will instead be managed by a
 collector specialized to handle a particular kind of source server
 (53, 54). These specialized collectors are still responsible to set
 up a telemetry data stream from them to the collector’s TSDB. In
 this case, the collector will also supply a YANG description (52, 55)
 of the incoming data stream.

 Processor components (21, 41, 71) are transforming the data stream in
 some way, e.g. converting from one unit of measurement to another, or
 adjusting the data values recorded to also include some aspect that
 this particular sensor is not taking into account.

 Aggregator components (31, 42, 43, 44) combine the time series
 telemetry data flows using some operation, e.g. summing, averaging or
 computing the max or min over them. In this example there are
 aggregators for Network, Storage, Compute and the entire Data Center

Lindblad Expires 22 April 2024 [Page 6]

Internet-Draft Philatelist October 2023

 On top of the stack, we may often find a (graphical) user interface
 (11), for human consumption of the intelligence acquired by the
 system. Equally relevant is of course an (AI) application making
 decisions based on findings in the aggregated telemetry flow.

3.1. The Provider Component

 A Provider is a source of telemetry data that also offers a YANG-
 based management interface. Each provider typically has a large
 number of "sensors" that can be polled or in some cases subscribed
 to.

 One problem with the sensors is that they are spread around inside
 the source system, and may not be trivial to locate. Also, the
 metadata assciated with the sensor is often only missing or only
 available in human readable form (free form strings), rather than in
 a strict machine parsable format.

 /hardware/component[name="psu3"]/.../sensor-data/value
 ...
 /interfaces/interface[name="eth0/0"]/.../out-broadcast-packets
 ...
 /routing/mpls/mpls-label-blocks/.../inuse-labels-count
 ...

 Figure 3: Example of scattered potential sensors in a device.

 To solve these problems, the Provider YANG module contains a sensor-
 catalog list. Essentially a list of all interesting sensors
 available on the system, with their sensor paths and machine parsable
 units, definition and any other metadata.

 An admin user or application can then copy the sensor definition from
 the sensor catalog and insert into the configuration in the colletor.

 +--ro sensor-catalog
 +--ro sensors
 +--ro sensor* [path]
 +--ro path? xpath
 +--ro sensor-type? identityref
 +--ro sensor-location? something
 +--ro sensor-state? something
 +--ro sensor-current-reading? something
 +--ro sensor-precision? string

 Figure 4: YANG tree diagram of the Provider sensor-catalog.

Lindblad Expires 22 April 2024 [Page 7]

Internet-Draft Philatelist October 2023

 Note: The "something" YANG-type is used in many places in this
 document. That is just a temporarty placeholder we use until we have
 figured out what the appropriate type should be.

 The sensor types are defined as YANG identities, making them
 maximally extensible. Examples of sensor types might be energy
 measured in kWh, or energy measured in J, or temperature measured in
 F, or in C, or in K.

3.2. The Collector Component

 Collector components collect data points from sources, typically by
 periodic polling or subscriptions, and ensure the collected data is
 stored in a Time Series Database (TSDB). The actual data stream may
 or may not be passing through the collector component; the collector
 is responsible for ensuring data flows from the source to the
 destination TSDB and that the data has a YANG description and is
 tagged with necessary metadata. How the collector agrees with a
 source to deliver data in a timely manner is beyond the scope of this
 document.

 +-------------+
 | COLLECTOR |
 +-------------+ ___________
 | / \
 +------------------+ (DESTINATION)
 v v |___________/|
 +------------+ +------------+ STREAM 1 | |
SOURCE		SOURCE	=======>	
- sensor 1		- sensor 1		
- sensor 2		- sensor 4	STREAM 2	
- sensor 3		- sensor 7	=======>	
 +------------+ +------------+ | |
 \\ STREAM 3 | |
 =============================> ___________/

 Figure 5: Example of Collector setting up three streams of
 telemetry data from two sources to one desitination.

 Each source holds a number of sensors that may be queried or
 subscribed to. The collector arranges the sensors into sensour
 groups that presumably are logically related, and that are collected
 using the same method. A number of collection methods (some YANG-
 based, some not) are modeled directly in the ietf-poweff-
 collector.yang module, but the set is designed to be easily
 extensible.

Lindblad Expires 22 April 2024 [Page 8]

Internet-Draft Philatelist October 2023

 +-- sensor-groups
 | +-- sensor-group* [id]
 | +-- id? something
 | +-- method? identityref
 | +-- get-static-url-once
 | | +-- url? something
 | | +-- format? something
 | +-- gnmi-polling
 | | +-- encoding? something
 | | +-- protocol? something
 | +-- restconf-get-polling
 | | +-- xxx? something
 | +-- netconf-get-polling
 | | +-- xxx? something
 | +-- restconf-yang-push-subscription
 | | +-- xxx? something
 | +-- netconf-yang-push-subscription
 | | +-- xxx? something
 | +-- redfish-polling
 | | +-- xxx? something
 | +-- frequency? sample-frequency
 | +-- path* [path]
 | +-- path? xpath
 | +-- sensor-type? identityref
 +-- streams
 +-- stream* [id]
 +-- id? something
 +-- source* string
 +-- sensor-group* [name]
 | +-- name? -> ../../../sensor-groups/sensor-group/id
 +-- destination? -> ../../../destinations/destination/id

 Figure 6: YANG tree diagram of the Collector sensor-groups and
 streams.

 The sensor groups are then arranged into streams from a collection of
 sources (that support the same set of sensor groups) to a
 destination. This structure has been chosen with the assumption that
 there will be many source devices with the same set of sensor groups,
 and we want to minimize repetition.

Lindblad Expires 22 April 2024 [Page 9]

Internet-Draft Philatelist October 2023

3.3. The Processor and Aggregator Components

 Processor components take an incoming data flow and transforms it
 somehow, and possibly augments it with a flow of derived information.
 The purpose of the transformation could be to convert between
 different units of measurement, correct for known errors in in the
 input data, or fill in approximate values where there are holes in
 the input data.

 Aggregator components take multiple incoming data flows and combine
 them, typically by adding them together, taking possible differences
 in cadence in the input data flows into account.

 Processor and Aggregator components provide a YANG model of the
 output data, just like the Collector components, so that all data
 flowing in the system has a YANG description and is associated with
 metadata.

 Note: In the current version of the YANG modules, a Processor is
 simply an Aggregator with a single input and output. Unless we see a
 need to keep these two component types separate, we might remove the
 Processor component and keep it baked in with the Aggregator.

 +-------------+
 | AGGREGATOR |
 +-------------+
 |
 +-----------+-----------+
 v v
 ___________ ___________
 / \ / \
 (SOURCE 1) (DESTINATION)
 |___________/| FLOW 1 |___________/|
 | | ======> | |
 | | | |
 | | FLOW 2 | |
 ___________/ ===##=> ___________/
 ||
 ___________ ||
 / \ ||
 (SOURCE 2) //
 |___________/| ==
 | |
 | |
 | |
 ___________/

Lindblad Expires 22 April 2024 [Page 10]

Internet-Draft Philatelist October 2023

 Figure 7: Example of an Aggregator setting up two flows of
 telemetry data from two sources to one desitination.

 In this diagram, the sources and destination look like separate
 TSDBs, which they might be. They may also be different buckets
 within the same TSDB.

 Each flow is associated with one or more inputs, one output and a
 series of processing operations. Each input flow and output flow may
 have an pre-processing or post-processing operation applied to it
 separately. Then all the input flows are combined using one or more
 aggregation operations. Some basic operations have been defined in
 the Aggregator YANG module, but the set of operations has been
 designed to be maximally extensible.

Lindblad Expires 22 April 2024 [Page 11]

Internet-Draft Philatelist October 2023

 +-- flows
 | +-- flow* [id]
 | +-- id? string
 | +-- (chain-position)?
 | +--:(input)
 | | +-- input
 | | +-- source?
 | | -> ../../../../../sources/source/id
 | +--:(output)
 | | +-- output
 | | +-- destination?
 | | -> ../../../../../destinations/destination/id
 | +--:(middle)
 | +-- middle
 | +-- inputs*
 | | -> ../../../../flows/flow/id
 | +-- pre-process-inputs?
 | | -> ../../../../operations/operation/id
 | +-- aggregate?
 | | -> ../../../../operations/operation/id
 | +-- post-process-output?
 | -> ../../../../operations/operation/id
 +-- operations
 +-- operation* [id]
 +-- id? something
 +-- (op-type)?
 +--:(linear-sum)
 | +-- linear-sum
 +--:(linear-average)
 | +-- linear-average
 +--:(linear-max)
 | +-- linear-max
 +--:(linear-min)
 | +-- linear-min
 +--:(rolling-average)
 | +-- rolling-average
 | +-- timespan? something
 +--:(filter-age)
 | +-- filter-age
 | +-- min-age? something
 | +-- max-age? something
 +--:(function)
 +-- function
 +-- name? something

 Figure 8: YANG tree diagram of the Aggregator flows and operations.

Lindblad Expires 22 April 2024 [Page 12]

Internet-Draft Philatelist October 2023

 The operations listed above are basic aggregation operations.
 Linear-sum is just adding all the input sources together, with linear
 interpolation when their data points don’t align perfectly in time.
 Rolling average is averaging the input flows over a given length of
 time. The filter-age drops all data points that are outside the min
 to max age. The function allows plugging in any other function the
 Aggregator may have defined, but more importantly, the operations
 choice is easily extended using YANG augment to include any other
 IETF or vendor specified extensions.

4. YANG-based Telemetry Outlook

 Much work has already gone into the area of telemetry, YANG, and even
 their intersection. E.g.
 [I-D.draft-ietf-opsawg-collected-data-manifest-01] and
 [I-D.draft-claise-netconf-metadata-for-collection-03] come to mind.

 Even though this work has a solid foundation and shares many or most
 of the goals with this work, we (the POWEFF team) have not found it
 easy to apply the above work directly in the practical work we do.
 So what we have tried to do is a very pragmatic approach to telemetry
 data collection the way we see it happening on the ground combined
 with the benefits of Model Driven Telemetry (MDT), in practice
 meaning YANG-based with additional YANG-modeled metadata.

 Many essential data sources in real world deployments do not support
 any YANG-based interfaces, and that situation is expected to remain
 for the forseable future, which is why we find it important to be
 able to ingest data from free form (often REST-based) interfaces, and
 then add the necessary rigor on the Collector level. Then output the
 datastreams in formats that existing, mature tools can consume
 directly.

 In particular, this draft depends on the mapping of YANG-based
 structures to the typical TSDB tag-based formats described in
 [I-D.draft-kll-yang-label-tsdb-00].

 For the evolution of the YANG-based telemetry area, we believe this
 approach, combining pragmatism in the data flow interfaces with rigor
 regarding the data content, is key. We would like to make this work
 fit in with the works of others in the field.

5. YANG Modules

5.1. Base types module for Philatelist

Lindblad Expires 22 April 2024 [Page 13]

Internet-Draft Philatelist October 2023

 <CODE BEGINS>
 module ietf-poweff-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-types";
 prefix ietf-poweff-types;

 organization
 "IETF OPSA (Operations and Management Area) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>
 Editor: Jan Lindblad
 <mailto:jlindbla@cisco.com>
 Editor: Snezana Mitrovic
 <mailto:snmitrov@cisco.com>
 Editor: Marisol Palmero
 <mailto:mpalmero@cisco.com>";
 description
 "This YANG module defines basic quantities, measurement units
 and sensor types for the POWEFF framework.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

 revision 2023-10-12 {
 description
 "Initial revision of POWEFF types";
 reference
 "RFC XXXX: ...";
 }

 typedef something { // FIXME: Used when we haven’t decided the type yet
 type string;
 }
 typedef xpath {
 type string; // FIXME: Proper type needed

Lindblad Expires 22 April 2024 [Page 14]

Internet-Draft Philatelist October 2023

 }
 typedef sample-frequency {
 type string; // FIXME: Proper type needed
 }

 // ========== SENSOR-CLASS ==============================
 identity sensor-class {
 description "Sensor’s relation to the asset it sits on.";
 }
 identity sc-input {
 base sensor-class;
 description "Sensor reports input quantity of the asset it sits
 on.";
 }
 identity sc-output {
 base sensor-class;
 description "Sensor reports output quantity of the asset it sits
 on.";
 }
 identity sc-allocated {
 base sensor-class;
 description "Sensor reports (maximum) allocated quantity of the
 asset it sits on.";
 }

 // ========== SENSOR-QUANTITY ==============================
 identity sensor-quantity {
 description "Sensor’s quantity being measured.";
 }
 identity sq-voltage {
 base sensor-quantity;
 description "Sensor reports electric tension, voltage.";
 }
 identity sq-current {
 base sensor-quantity;
 description "Sensor reports electric current.";
 }
 identity sq-power {
 base sensor-quantity;
 description "Sensor reports power draw (energy per unit of time).";
 }
 identity sq-power-apparent {
 base sq-power;
 description "Sensor reports apparent power, i.e. average electrical
 current times voltage (in VA).";
 }
 identity sq-power-true {
 base sq-power;

Lindblad Expires 22 April 2024 [Page 15]

Internet-Draft Philatelist October 2023

 description "Sensor reports true power, i.e. integral over current
 and voltage at each instant in time.";
 }
 identity sq-energy {
 base sensor-quantity;
 description "Sensor reports actual energy drawn by asset.";
 }
 identity sq-co2-emission {
 base sensor-quantity;
 description "Sensor reports CO2 (carbon dioxide) emission by
 asset.";
 }
 identity sq-co2eq-emission {
 base sensor-quantity;
 description "Sensor reports CO2 (carbon dioxide) equivalent
 emission by asset.";
 }
 identity sq-temperature {
 base sensor-quantity;
 description "Sensor reports temperature of asset.";
 }

 // ========== SENSOR-UNIT ==============================
 identity sensor-unit {
 description "Sensor’s unit of reporting.";
 }
 identity su-volt {
 base sensor-unit;
 base sq-voltage;
 description "Sensor unit volt, V.";
 }
 identity su-ampere {
 base sensor-unit;
 base sq-current;
 description "Sensor unit ampere, A.";
 }
 identity su-watt {
 base sensor-unit;
 base sq-power;
 description "Sensor unit watt, W.";
 }
 identity su-voltampere {
 base sensor-unit;
 base sq-power;
 description "Sensor unit Volt*Ampere, VA.";
 }
 identity su-kw {
 base sensor-unit;

Lindblad Expires 22 April 2024 [Page 16]

Internet-Draft Philatelist October 2023

 base sq-power;
 description "Sensor unit kilowatt, kW.";
 }
 identity su-joule {
 base sensor-unit;
 base sq-energy;
 description "Sensor unit joule, J.";
 }
 identity su-wh {
 base sensor-unit;
 base sq-energy;
 description "Sensor unit watthour, Wh.";
 }
 identity su-kwh {
 base sensor-unit;
 base sq-energy;
 description "Sensor unit kliowatthour, kWh.";
 }
 identity su-kelvin {
 base sensor-unit;
 base sq-temperature;
 description "Sensor unit kelvin, K.";
 }
 identity su-celsius {
 base sensor-unit;
 base sq-temperature;
 description "Sensor unit celsius, C.";
 }
 identity su-farenheit {
 base sensor-unit;
 base sq-temperature;
 description "Sensor unit farenheit, F.";
 }
 identity su-gram {
 base sensor-unit;
 base sq-co2-emission;
 description "Sensor unit gram, g.";
 }
 identity su-kg {
 base sensor-unit;
 base sq-co2-emission;
 description "Sensor unit kliogram, kg.";
 }
 identity su-ton {
 base sensor-unit;
 base sq-co2-emission;
 description "Sensor unit ton, t.";
 }

Lindblad Expires 22 April 2024 [Page 17]

Internet-Draft Philatelist October 2023

 // ========== SENSOR-TYPE ==============================
 identity sensor-type {
 description "Sensor’s type, i.e. combination of class, quantity and
 unit.";
 }
 identity st-v-in {
 base sensor-type;
 base sc-input;
 base sq-voltage;
 base su-volt;
 description "Sensor reporting Voltage In to asset.";
 }
 identity st-v-out {
 base sensor-type;
 base sc-output;
 base sq-voltage;
 base su-volt;
 description "Sensor reporting Voltage Out of asset.";
 }
 identity st-i-in {
 base sensor-type;
 base sc-input;
 base sq-current;
 base su-ampere;
 description "Sensor reporting Current In to asset.";
 }
 identity st-i-out {
 base sensor-type;
 base sc-output;
 base sq-current;
 base su-ampere;
 description "Sensor reporting Current Out of asset.";
 }
 identity st-p-in-apparent-watt {
 base sensor-type;
 base sc-input;
 base sq-power-apparent;
 base su-voltampere;
 description "Sensor reporting Power In to asset as apparent (I*U)
 power.";
 }
 identity st-p-out-apparent-watt {
 base sensor-type;
 base sc-output;
 base sq-power-apparent;
 base su-voltampere;
 description "Sensor reporting Power Out of asset as apparent (I*U)
 power.";

Lindblad Expires 22 April 2024 [Page 18]

Internet-Draft Philatelist October 2023

 }
 identity st-p-in-true-watt {
 base sensor-type;
 base sc-input;
 base sq-power-true;
 base su-watt;
 description "Sensor reporting Power In to asset as true power.";
 }
 identity st-p-out-true-watt {
 base sensor-type;
 base sc-output;
 base sq-power-true;
 base su-watt;
 description "Sensor reporting Power Out of asset as true power.";
 }
 identity st-p-allocated-watt {
 base sensor-type;
 base sc-allocated;
 base sq-power;
 base su-watt;
 description "Sensor reporting Allocated Power for asset.";
 }
 identity st-w-j {
 base sensor-type;
 base sq-energy;
 base su-joule;
 description "Sensor reporting energy draw of asset in J.";
 }
 identity st-w-wh {
 base sensor-type;
 base sq-energy;
 base su-wh;
 description "Sensor reporting energy draw of asset in Wh.";
 }
 identity st-w-kwh {
 base sensor-type;
 base sq-energy;
 base su-kwh;
 description "Sensor reporting energy draw of asset in kWh.";
 }
 identity st-t-k {
 base sensor-type;
 base sq-temperature;
 base su-kelvin;
 description "Sensor reporting Temperature of asset in K.";
 }
 identity st-t-c {
 base sensor-type;

Lindblad Expires 22 April 2024 [Page 19]

Internet-Draft Philatelist October 2023

 base sq-temperature;
 base su-celsius;
 description "Sensor reporting Temperature of asset in °C.";
 }
 identity st-t-f {
 base sensor-type;
 base sq-temperature;
 base su-farenheit;
 description "Sensor reporting Temperature of asset in °F.";
 }

 // ========== COLLECTION-METHOD ==============================

 identity collection-method;
 identity cm-polled {
 base collection-method;
 }
 identity cm-gnmi {
 base collection-method;
 }
 identity cm-restconf {
 base collection-method;
 }
 identity cm-netconf {
 base collection-method;
 }
 identity cm-redfish {
 base collection-method;
 }
 identity get-static-url-once {
 base collection-method;
 }
 identity gnmi-polling {
 base cm-gnmi;
 base cm-polled;
 }
 identity restconf-get-polling {
 base cm-restconf;
 base cm-polled;
 }
 identity netconf-get-polling {
 base cm-netconf;
 base cm-polled;
 }
 identity restconf-yang-push-subscription {
 base cm-restconf;
 }
 identity netconf-yang-push-subscription {

Lindblad Expires 22 April 2024 [Page 20]

Internet-Draft Philatelist October 2023

 base cm-netconf;
 }
 identity redfish-polling {
 base cm-redfish;
 }
 }
 <CODE ENDS>

5.2. Provider interface module for Philatelist

 <CODE BEGINS>
 module ietf-poweff-provider {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-provider";
 prefix ietf-poweff-provider;

 import ietf-poweff-types {
 prefix ietf-poweff-types;
 }

 organization
 "IETF OPSA (Operations and Management Area) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>
 Editor: Jan Lindblad
 <mailto:jlindbla@cisco.com>
 Editor: Snezana Mitrovic
 <mailto:snmitrov@cisco.com>
 Editor: Marisol Palmero
 <mailto:mpalmero@cisco.com>";
 description
 "This YANG module defines the POWEFF Provider.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

Lindblad Expires 22 April 2024 [Page 21]

Internet-Draft Philatelist October 2023

 revision 2023-10-12 {
 description
 "Initial revision of POWEFF Provider";
 reference
 "RFC XXXX: ...";
 }

 grouping provider-g {
 container sensor-catalog {
 config false;
 container sensors {
 list sensor {
 key path;
 leaf path { type ietf-poweff-types:xpath; }
 leaf sensor-type { type identityref { base ietf-poweff-types:sensor-
type; }}

 leaf sensor-location {
 type ietf-poweff-types:something;
 description
 "Indicates the current location where the sensor is located
 in the chassis,typically refers to slot";
 }
 leaf sensor-state { // FIXME: What does this mean?
 type ietf-poweff-types:something;
 description
 "Current state of the sensor";
 }
 leaf sensor-current-reading { // FIXME: Do we want a copy of the val
ue here?
 type ietf-poweff-types:something;
 description
 "Current reading of the sensor";
 }
 leaf sensor-precision {
 type string;
 description
 "Maximum deviation to be considered. This attribute mainly
 will apply to drawn power, which corresponds to PSU PowerIn
 measured power or calculated power; assuming discrepancy
 between Real Power, power collected from a power meter, and
 power measured or calculated from the metrics provided by
 the sensors";
 }
 container sensor-thresholds { // FIXME: Is this for generating alarm
s, or what?
 description
 "Threshold values for the particular sensor.
 Default values shall beprovided as part of static data
 but when configurable need to be pulledfrom the device.
 Ideally, the sensor should allow configuing

Lindblad Expires 22 April 2024 [Page 22]

Internet-Draft Philatelist October 2023

 thesethreshold values";

 leaf minor-low {
 type string;
 description
 "minor-low";
 }
 leaf minor-high {
 type string;
 description
 "minor-high";
 }
 leaf major-low {
 type string;
 description
 "major-low";
 }
 leaf major-high {
 type string;
 description
 "major-high";
 }
 leaf critical-low {
 type string;
 description
 "critical-low";
 }
 leaf critical-high {
 type string;
 description
 "critical-high";
 }
 leaf shutdown { // FIXME: What does this mean for a sensor?
 type string;
 description
 "shutdown";
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

5.3. Collector interface module for Philatelist

Lindblad Expires 22 April 2024 [Page 23]

Internet-Draft Philatelist October 2023

 <CODE BEGINS>
 module ietf-poweff-collector {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-collector";
 prefix ietf-poweff-collector;

 import ietf-poweff-types {
 prefix ietf-poweff-types;
 }

 organization
 "IETF OPSA (Operations and Management Area) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>
 Editor: Jan Lindblad
 <mailto:jlindbla@cisco.com>
 Editor: Snezana Mitrovic
 <mailto:snmitrov@cisco.com>
 Editor: Marisol Palmero
 <mailto:mpalmero@cisco.com>";
 description
 "This YANG module defines the POWEFF Collector.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

 revision 2023-10-12 {
 description
 "Initial revision of POWEFF Collector";
 reference
 "RFC XXXX: ...";
 }

 /*

Lindblad Expires 22 April 2024 [Page 24]

Internet-Draft Philatelist October 2023

 A COLLECTOR programs one or more SOURCE(s) to generate a
 STREAM of telemetry data. The STREAM is sent to a specific
 DESTINATION.

 Each STREAM consists of timestamped sensor values from each
 sensor in a sensor group.

 +-------------+
 | COLLECTOR |
 +-------------+ ___________
 | / \
 +------------------+ (DESTINATION)
 v v |___________/|
 +------------+ +------------+ STREAM 1 | |
 | SOURCE | | SOURCE | =======> | |
 | - sensor 1 | | - sensor 1 | | |
 | - sensor 2 | | - sensor 4 | STREAM 2 | |
 | - sensor 3 | | - sensor 7 | =======> | |
 +------------+ +------------+ | |
 \\ STREAM 3 | |
 =============================> ___________/

 */

 grouping data-endpoint-g {
 leaf url { type ietf-poweff-types:something; }
 leaf organization { type ietf-poweff-types:something; }
 leaf bucket { type ietf-poweff-types:something; }
 container impl-specific {
 list binding {
 key key;
 leaf key { type string; }
 choice value-type {
 leaf value { type string; }
 leaf-list values { type string; ordered-by user; }
 leaf env-var { type string; }
 }
 }
 }
 }

 grouping sensor-group-g {
 leaf method {
 type identityref {
 base ietf-poweff-types:collection-method;
 }
 }
 container get-static-url-once {

Lindblad Expires 22 April 2024 [Page 25]

Internet-Draft Philatelist October 2023

 when "derived-from-or-self(../method, ’ietf-poweff-types:get-static-url-
once’)";
 leaf url { type ietf-poweff-types:something; }
 leaf format { type ietf-poweff-types:something; } // JSON-IETF, XML, etc
 }
 container gnmi-polling {
 when "derived-from-or-self(../method, ’ietf-poweff-types:gnmi-polling’)"
;
 leaf encoding { type ietf-poweff-types:something; } // self-describing-g
pb
 leaf protocol { type ietf-poweff-types:something; } // protocol grpc no-
tls
 }
 container restconf-get-polling {
 when "derived-from-or-self(../method, ’ietf-poweff-types:restconf-get-po
lling’)";
 leaf xxx { type string; }
 }
 container netconf-get-polling {
 when "derived-from-or-self(../method, ’ietf-poweff-types:netconf-get-pol
ling’)";
 leaf xxx { type string; }
 }
 container restconf-yang-push-subscription {
 when "derived-from-or-self(../method, ’ietf-poweff-types:restconf-yang-p
ush-subscription’)";
 leaf xxx { type string; }
 }
 container netconf-yang-push-subscription {
 when "derived-from-or-self(../method, ’ietf-poweff-types:netconf-yang-pu
sh-subscription’)";
 leaf xxx { type string; }
 }
 container redfish-polling {
 when "derived-from-or-self(../method, ’ietf-poweff-types:redfish-polling
’)";
 leaf xxx { type string; }
 }
 leaf frequency {
 when "derived-from(../method, ’ietf-poweff-types:cm-polled’)";
 type ietf-poweff-types:sample-frequency;
 }
 list path {
 key path;
 leaf path { type ietf-poweff-types:xpath; }
 leaf sensor-type { type identityref { base ietf-poweff-types:sensor-type
; }}
 leaf attribution { type string; }
 }
 }

 grouping collector-g {
 container poweff-collector {
 container destinations {
 list destination {
 key id;
 leaf id { type ietf-poweff-types:something; }
 uses data-endpoint-g;

Lindblad Expires 22 April 2024 [Page 26]

Internet-Draft Philatelist October 2023

 }
 }

 container sensor-groups {
 list sensor-group {
 key id;
 leaf id { type ietf-poweff-types:something; }
 uses sensor-group-g;
 }
 }

 container streams {
 list stream {
 key id;
 leaf id { type ietf-poweff-types:something; }
 leaf-list source { type string; } // Implementation specific meaning
, possibly wildcards
 list sensor-group {
 key name;
 leaf name { type leafref { path ../../../sensor-groups/sensor-grou
p/id; }}
 }
 leaf destination { type leafref { path ../../../destinations/destina
tion/id; }}
 }
 }
 }
 }
 }
 <CODE ENDS>

5.4. Aggregator interface module for Philatelist

 <CODE BEGINS>
 module ietf-poweff-aggregator {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-aggregator";
 prefix ietf-poweff-aggregator;

 import ietf-poweff-types {
 prefix ietf-poweff-types;
 }
 import ietf-poweff-collector {
 prefix ietf-poweff-collector;
 }

 organization
 "IETF OPSA (Operations and Management Area) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>

Lindblad Expires 22 April 2024 [Page 27]

Internet-Draft Philatelist October 2023

 Editor: Jan Lindblad
 <mailto:jlindbla@cisco.com>
 Editor: Snezana Mitrovic
 <mailto:snmitrov@cisco.com>
 Editor: Marisol Palmero
 <mailto:mpalmero@cisco.com>";
 description
 "This YANG module defines the POWEFF Aggregator.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

 revision 2023-10-12 {
 description
 "Initial revision of POWEFF Aggregator";
 reference
 "RFC XXXX: ...";
 }

 /*

 An AGGREGATOR ensures data from one or more SOURCE(s) are
 combined into a FLOW using a (sequence of) OPERATIONs (OPs)
 to generate a new data set in the DESTINATION (which could
 be a new collection in the same data storage system as the
 SOURCE).

 +-------------+
 | AGGREGATOR |
 +-------------+
 |
 +-----------+-----------+
 v v
 ___________ ___________
 / \ / \
 (SOURCE 1) (DESTINATION)

Lindblad Expires 22 April 2024 [Page 28]

Internet-Draft Philatelist October 2023

 |___________/| FLOW 1 |___________/|
 | | ======> | |
 | | | |
 | | FLOW 2 | |
 ___________/ ===##=> ___________/
 ||
 ___________ ||
 / \ ||
 (SOURCE 2) //
 |___________/| ==
 | |
 | |
 | |
 ___________/

 */

 grouping aggregator-g {
 container poweff-aggregator {
 container sources {
 list source {
 key id;
 leaf id { type ietf-poweff-types:something; }
 uses ietf-poweff-collector:data-endpoint-g;
 }
 }
 container destinations {
 list destination {
 key id;
 leaf id { type ietf-poweff-types:something; }
 uses ietf-poweff-collector:data-endpoint-g;
 }
 }
 container flows {
 list flow {
 key id;
 leaf id { type string; }
 choice chain-position {
 container input {
 leaf source { type leafref { path ../../../../../sources/source/
id; }}
 }
 container output {
 leaf destination { type leafref { path ../../../../../destinatio
ns/destination/id; }}
 }
 container middle {
 leaf-list inputs { type leafref { path ../../../../flows/flow/id
; }}
 leaf pre-process-inputs { type leafref { path ../../../../operat
ions/operation/id; }}

Lindblad Expires 22 April 2024 [Page 29]

Internet-Draft Philatelist October 2023

 leaf aggregate { type leafref { path ../../../../operations/oper
ation/id; }}
 leaf post-process-output { type leafref { path ../../../../opera
tions/operation/id; }}
 }
 }
 }
 }
 container operations {
 list operation {
 key id;
 leaf id { type ietf-poweff-types:something; }
 choice op-type {
 container linear-sum {}
 container linear-average {}
 container linear-max {}
 container linear-min {}
 container rolling-average {
 leaf timespan { type ietf-poweff-types:something; }
 }
 container filter-age {
 leaf min-age { type ietf-poweff-types:something; }
 leaf max-age { type ietf-poweff-types:something; }
 }
 container function {
 leaf name { type ietf-poweff-types:something; }
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

6. Security Considerations

 TODO Security

7. IANA Considerations

 This document has no IANA actions.

8. References

8.1. Normative References

 [I-D.draft-kll-yang-label-tsdb-00]
 Larsson, K., "Mapping YANG Data to Label-Set Time Series",
 Work in Progress, Internet-Draft, draft-kll-yang-label-

Lindblad Expires 22 April 2024 [Page 30]

Internet-Draft Philatelist October 2023

 tsdb-00, 18 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-kll-yang-
 label-tsdb-00>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

8.2. Informative References

 [I-D.draft-claise-netconf-metadata-for-collection-03]
 Claise, B., Nayyar, M., and A. R. Sesani, "Per-Node
 Capabilities for Optimum Operational Data Collection",
 Work in Progress, Internet-Draft, draft-claise-netconf-
 metadata-for-collection-03, 25 January 2022,
 <https://datatracker.ietf.org/doc/html/draft-claise-
 netconf-metadata-for-collection-03>.

 [I-D.draft-ietf-opsawg-collected-data-manifest-01]
 Claise, B., Quilbeuf, J., Lopez, D., Martinez-Casanueva,
 I. D., and T. Graf, "A Data Manifest for Contextualized
 Telemetry Data", Work in Progress, Internet-Draft, draft-
 ietf-opsawg-collected-data-manifest-01, 10 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
 collected-data-manifest-01>.

Acknowledgments

 Kristian Larsson has provided invaluable insights, experience and
 validation of the design. Many thanks to the entire POWEFF team for
 their committment, flexibility and hard work behind this. Hat off to
 Benoît Claise, who inspires by the extensive work produced in IETF
 over the years, and in this area in particular.

Author’s Address

 Jan Lindblad
 Cisco
 Email: jlindbla@cisco.com

Lindblad Expires 22 April 2024 [Page 31]

Network Working Group T. Graf

Internet-Draft Swisscom

Intended status: Standards Track J. Quilbeuf

Expires: 9 April 2024 Huawei

 A. Huang Feng

 INSA-Lyon

 7 October 2023

 Support of Hostname and Sequencing in YANG Notifications

 draft-tgraf-netconf-notif-sequencing-02

Abstract

 This document specifies a new YANG module that augment the NETCONF

 Event Notification header to support hostname, Message Publisher ID

 and sequence numbers to identify from which network node and at which

 time the message was published. This allows the collector to

 recognize loss, delay and reordering between the publisher and the

 downstream system storing the message.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

Graf, et al. Expires 9 April 2024 [Page 1]

Internet-Draft YANG Notifications Sequencing October 2023

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Extend the NETCONF Event Notification Header 3

 3. YANG Module for Event Notifications 4

 3.1. YANG Tree Diagram . 4

 3.2. Full Tree View . 5

 3.3. YANG Module . 5

 4. Security Considerations 7

 5. IANA Considerations . 7

 5.1. IETF XML Registry . 7

 5.2. YANG Module Name . 7

 6. Operational Considerations 7

 6.1. SysName Correlation 7

 7. Acknowledgements . 7

 8. References . 8

 8.1. Normative References 8

 8.2. Informative References 9

 Authors’ Addresses . 9

1. Introduction

 Section 4 of [RFC5277] describes the NETCONF event notification

 header using a XML Schema. In the metadata of the event notification

 header, only the eventTime is present indicating at which time the

 notification message was published. For other encodings, the same

 schema is implemented using a YANG module in

 [I-D.ahuang-netconf-notif-yang]. Furthermore, in Section 3.7 of

 [RFC8641], the subscription ID is added to the "push-update" and

 "push-change-update" notification messages allowing to recognize to

 which xpath or sub-tree the node was subscribed to.

 When the NETCONF event notification message is forwarded from the

 receiver to another system, such as a messaging system or a time

 series database where the message is stored, the transport context is

 lost since it is not part of the NETCONF event notification message

 metadata. Therefore, the downstream system is unable to associate

 the message to the publishing process (the exporting router), nor

 able to detect message loss or reordering.

Graf, et al. Expires 9 April 2024 [Page 2]

Internet-Draft YANG Notifications Sequencing October 2023

 Today, network operators workaround this impediment by preserving the

 transport source IP address and sequence numbers of the publishing

 process. However, this implies that this information needs to be

 encoded in the NETCONF event notification message which impacts the

 semantic readability of the message in the downstream system.

 On top of that, the transport source IP address might not represent

 the management IP address by which the YANG push server should be

 known. In other terms, the source-host [RFC6470], which is the

 "Address of the remote host for the session" might not be the

 management IP address.

 By extending the NETCONF Event Notification header with sysName,

 which could be an IP address or a DNS domain name, a reference to the

 YANG push publisher process and a sequence number as described in

 [RFC9187], the downstream system is not only able to identify from

 which network node, subscription, and time the message was published

 but also, the order of the published messages.

 To correlate network data among different Network Telemetry planes as

 described in Section 3.1 of [RFC9232] or among different YANG push

 subscription types defined in Section 3.1 of [RFC8641], sysName

 describes from which network node the state change was observed or

 from when to when the data was accounted. This is essential for

 understanding the timely relationship among these different planes

 and YANG push subscription types.

2. Extend the NETCONF Event Notification Header

 Besides the eventTime described in Section 2.2.1 of [RFC5277] the

 following metadata objects are part of a "push-update" and "push-

 change-update" notification message.

 sysName: Describes the hostname following the ’sysName’ object

 definition in [RFC1213] from where the message was published from.

 messagePublisherId: Message Publisher ID is a 32-bit identifier

 defined in [I-D.ietf-netconf-distributed-notif]. This identifier

 is unique to the publisher node and identifies the publishing

 process of the node to allow the disambiguation of an information

 source.

 sequenceNumber: Generates a unique sequence number as described in

 [RFC9187] for each published message.

Graf, et al. Expires 9 April 2024 [Page 3]

Internet-Draft YANG Notifications Sequencing October 2023

 Figure 1 provides an example of a "push-change-update" message with

 the sysName, messagePublisherId and sequenceNumber. This "push-

 change-update" message is encoded in XML [W3C.REC-xml-20081126] over

 the Network Configuration Protocol (NETCONF) as per [RFC8640].

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2023-02-04T16:30:11.22Z</eventTime>

 <sysName xmlns="urn:ietf:params:xml:ns:yang:ietf-notification-sequencing">

 example-router

 </sysName>

 <messagePublisherId xmlns="urn:ietf:params:xml:ns:yang:ietf-notification-sequenc

ing">

 1

 </messagePublisherId>

 <sequenceNumber xmlns="urn:ietf:params:xml:ns:yang:ietf-notification-sequencing"

>

 187653

 </sequenceNumber>

 <push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

 <id>1011</id>

 <datastore-contents>

 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

 <interface>

 <name>eth0</name>

 <oper-status>up</oper-status>

 </interface>

 </interfaces>

 </datastore-contents>

 </push-update>

</notification>

 Figure 1: XML Push Example for a subscription-modified

 notification message

3. YANG Module for Event Notifications

3.1. YANG Tree Diagram

 This ietf-notification-sequencing YANG module augments the ietf-

 notification YANG module specified in [I-D.ahuang-netconf-notif-yang]

 adding the sysName and the sequenceNumber leaves as described in

 Section 2 of this document.

 module: ietf-notification-sequencing

 augment-structure /inotif:notification:

 +-- sysName inet:host

 +-- messagePublisherId uint32

 +-- sequenceNumber yang:counter32

Graf, et al. Expires 9 April 2024 [Page 4]

Internet-Draft YANG Notifications Sequencing October 2023

3.2. Full Tree View

 The following is the YANG tree diagram [RFC8340] for the ietf-

 notification-sequencing augmentation within the ietf-notification.

 module: ietf-notification

 structure notification:

 +-- eventTime yang:date-and-time

 +-- inotifseq:sysName inet:host

 +-- inotifseq:messagePublisherId uint32

 +-- inotifseq:sequenceNumber yang:counter32

3.3. YANG Module

 <CODE BEGINS> file "ietf-notification-sequencing@2023-03-25.yang"

 module ietf-notification-sequencing {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-notification-sequencing";

 prefix inotifseq;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-notification {

 prefix inotif;

 reference

 "draft-ahuang-netconf-notif-yang: NETCONF Event Notification YANG";

 }

 import ietf-yang-structure-ext {

 prefix sx;

 reference

 "RFC 8791: YANG Data Structure Extensions";

 }

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http:/tools.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Thomas Graf

Graf, et al. Expires 9 April 2024 [Page 5]

Internet-Draft YANG Notifications Sequencing October 2023

 <mailto:thomas.graf@swisscom.com>

 Jean Quilbeuf

 <mailto:jean.quilbeuf@huawei.com>

 Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>";

 description

 "Defines NETCONF Event Notification structure with the sysName and

 the sequenceNumber.

 Copyright (c) 2023 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2023-03-25 {

 description

 "First revision";

 reference

 "RFC XXXX: YANG Notifications Sequencing";

 }

 sx:augment-structure "/inotif:notification" {

 leaf sysName {

 type inet:host;

 mandatory true;

 description

 "IP address or a DNS domain name from the server from which

 the message was published.";

 }

 leaf messagePublisherId {

 type uint32;

 mandatory true;

 description

 "Identifier of the publishing process generating this notification.";

 }

 leaf sequenceNumber {

 type yang:counter32;

 mandatory true;

 description

 "Unique sequence number as described in [RFC3339] for each

Graf, et al. Expires 9 April 2024 [Page 6]

Internet-Draft YANG Notifications Sequencing October 2023

 published message.";

 }

 }

 }

 <CODE ENDS>

4. Security Considerations

 The security considerations for the NETCONF Event notifications are

 described in [RFC5277]. This documents adds no additional security

 considerations.

5. IANA Considerations

5.1. IETF XML Registry

 This document registers the following URIs in the "IETF XML Registry"

 [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-notification-sequencing

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

5.2. YANG Module Name

 This document registers the following YANG modules in the "YANG

 Module Names" registry [RFC6020]:

 name: ietf-notification-sequencing

 namespace: urn:ietf:params:xml:ns:yang:ietf-notification-sequencing

 prefix: inotifseq

 reference: RFC XXXX

6. Operational Considerations

6.1. SysName Correlation

 In order to allow data correlation among BGP Monitoring Protocol

 (BMP) [RFC7854] and YANG push, the same hostname value should be used

 as described in section 4.4 of [RFC7854] for the information TLV in

 the init BMP message type.

7. Acknowledgements

 The authors would like to thank Rob Wilton, Nick Corran, Pierre

 Francois, Benoit Claise, Ahmed Elhassany and Ignacio Dominguez

 Martinez-Casanueva for their review and valuable comments.

Graf, et al. Expires 9 April 2024 [Page 7]

Internet-Draft YANG Notifications Sequencing October 2023

8. References

8.1. Normative References

 [I-D.ahuang-netconf-notif-yang]

 Feng, A. H., Francois, P., Graf, T., and B. Claise, "YANG

 model for NETCONF Event Notifications", Work in Progress,

 Internet-Draft, draft-ahuang-netconf-notif-yang-02, 23

 July 2023, <https://datatracker.ietf.org/doc/html/draft-

 ahuang-netconf-notif-yang-02>.

 [I-D.ietf-netconf-distributed-notif]

 Zhou, T., Zheng, G., Voit, E., Graf, T., and P. Francois,

 "Subscription to Distributed Notifications", Work in

 Progress, Internet-Draft, draft-ietf-netconf-distributed-

 notif-07, 7 July 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-

 distributed-notif-07>.

 [RFC1213] McCloghrie, K. and M. Rose, "Management Information Base

 for Network Management of TCP/IP-based internets: MIB-II",

 STD 17, RFC 1213, DOI 10.17487/RFC1213, March 1991,

 <https://www.rfc-editor.org/info/rfc1213>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event

 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,

 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC9187] Touch, J., "Sequence Number Extension for Windowed

 Protocols", RFC 9187, DOI 10.17487/RFC9187, January 2022,

 <https://www.rfc-editor.org/info/rfc9187>.

 [W3C.REC-xml-20081126]

 Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and

 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth

Graf, et al. Expires 9 April 2024 [Page 8]

Internet-Draft YANG Notifications Sequencing October 2023

 Edition)", World Wide Web Consortium Recommendation REC-

 xml-20081126, November 2008,

 <https://www.w3.org/TR/2008/REC-xml-20081126>.

8.2. Informative References

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)

 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,

 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

 [RFC7854] Scudder, J., Ed., Fernando, R., and S. Stuart, "BGP

 Monitoring Protocol (BMP)", RFC 7854,

 DOI 10.17487/RFC7854, June 2016,

 <https://www.rfc-editor.org/info/rfc7854>.

 [RFC8640] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

 E., and A. Tripathy, "Dynamic Subscription to YANG Events

 and Datastores over NETCONF", RFC 8640,

 DOI 10.17487/RFC8640, September 2019,

 <https://www.rfc-editor.org/info/rfc8640>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications

 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,

 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC9232] Song, H., Qin, F., Martinez-Julia, P., Ciavaglia, L., and

 A. Wang, "Network Telemetry Framework", RFC 9232,

 DOI 10.17487/RFC9232, May 2022,

 <https://www.rfc-editor.org/info/rfc9232>.

Authors’ Addresses

 Thomas Graf

 Swisscom

 Binzring 17

 CH-8045 Zurich

 Switzerland

 Email: thomas.graf@swisscom.com

 Jean Quilbeuf

 Huawei

 Email: jean.quilbeuf@huawei.com

Graf, et al. Expires 9 April 2024 [Page 9]

Internet-Draft YANG Notifications Sequencing October 2023

 Alex Huang Feng

 INSA-Lyon

 Lyon

 France

 Email: alex.huang-feng@insa-lyon.fr

Graf, et al. Expires 9 April 2024 [Page 10]

	draft-ahuang-netconf-notif-yang-03
	draft-ahuang-netconf-udp-client-server-00
	draft-ietf-netconf-distributed-notif-08
	draft-ietf-netconf-list-pagination-01
	draft-ietf-netconf-privcand-01
	draft-ietf-netconf-transaction-id-02
	draft-ietf-netconf-udp-notif-11
	draft-kll-yang-label-tsdb-00
	draft-lindblad-tlm-philatelist-00
	draft-tgraf-netconf-notif-sequencing-02

