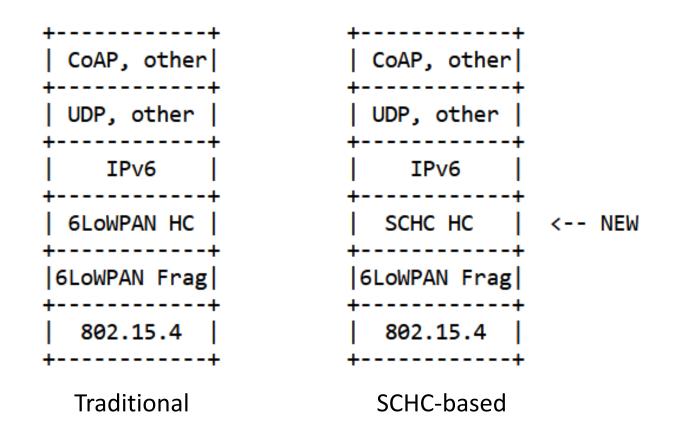
Transmission of SCHC-compressed packets over IEEE 802.15.4 networks

draft-ietf-6lo-schc-15dot4-04


Carles Gomez

Universitat Politècnica de Catalunya (UPC) carles.gomez@upc.edu

Ana Minaburo

Consultant anaminaburo@gmail.com

Main goal

SCHC (RFC 8724) exploits a priori knowledge of header field values

Status

WG adoption

- draft-ietf-6lo-schc-15dot4-00
 - Same content as draft-gomez-6lo-schc-15dot4-05
- In January 2023

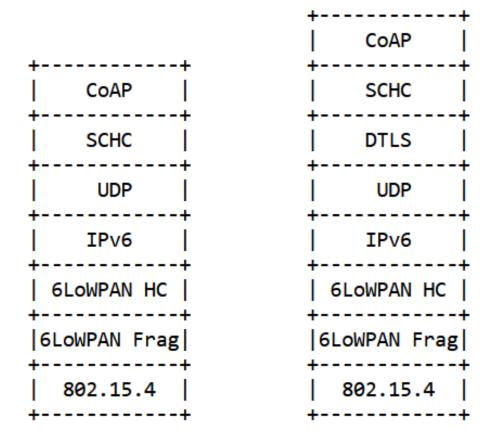
Version -03

- Several additions and updates
- Aims to address the comments from Kiran and Georgios

Version -04

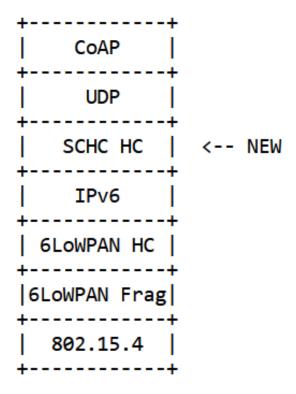
- Incorporates feedback from the SCHC WG interim
 - October 17

Table of Contents


			3. Architecture
ı		l	3.1. Protocol stacks
	2 subsections		3.1.1. Main protocol stack 5
		7	3.1.2. Transition protocol stacks 6
	NEW		3.2. Network topologies
			3.3. Single-hop communication
			3.4. Multihop communication
			3.4.1. Straightforward Route-Over (SRO) 8
			3.4.2. Tunneled, RPL-based Route-Over (TRO) 9
			3.4.3. Pointer-based Route-Over (PRO)
			3.4.4. Mesh-Under
			4. Frame Format
			4.1. Single-hop or SRO frame format
			4.1.1. SCHC Dispatch
			4.1.2. SCHC-compressed Header
			4.1.3. Padding
			4.2. TRO frame format
			4.3. PRO frame format
			4.4. Mesh-Under frame format
	Relocated		4.5. Summary

1. Introduction

- Typical UDP-compressed header (RFC 6282)
 - OLD:
 - 4 bytes
 - **NEW**:
 - 2 to 4 bytes
- Typical IPv6/UDP-compressed header (RFC 6282)
 - OLD:
 - 6 bytes (link-local addresses)
 - 7 bytes (global addresses)
 - NEW:
 - 4 to 6 bytes (link-local addresses)
 - 5 to 7 bytes (global addresses)


3.1.2. Transition protocol stacks (I/II)

RFC 8824 enables SCHC HC for CoAP:

3.1.3. Transition protocol stacks (II/II)

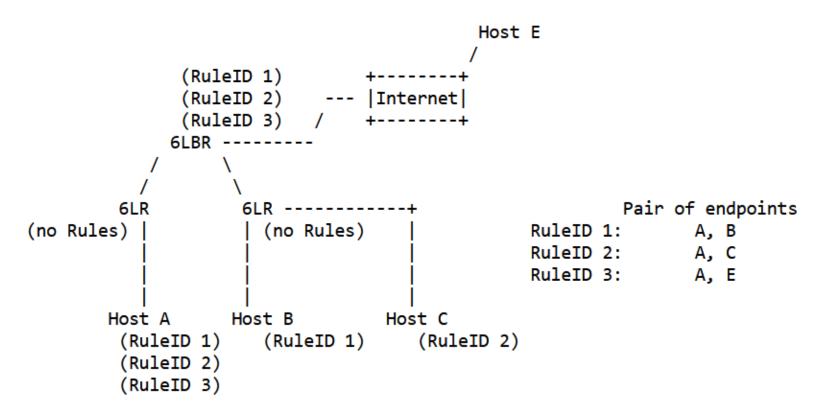
- Currently enabled by this document...
 - ... but the SCHC architecture draft may actually enable it in the future:

3.3. Single-hop communication

- If the two endpoints are single-hop neighbors
 - Both endpoints MUST store the Rules for their communications
 - Same frame format as in Section 4.1
 - Same as for Straightforward Route Over

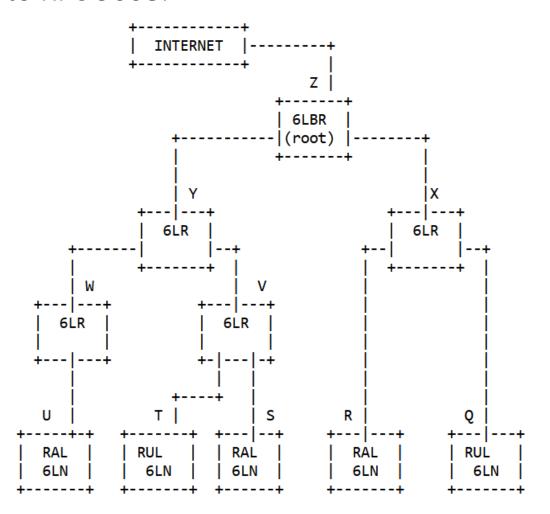
3.4. Multihop communication

- New acronyms for Route-Over:
 - Straightforward Route-Over (SRO)
 - Tunneled, RPL-based Route-Over (TRO)
 - Pointer-based Route-Over (PRO)

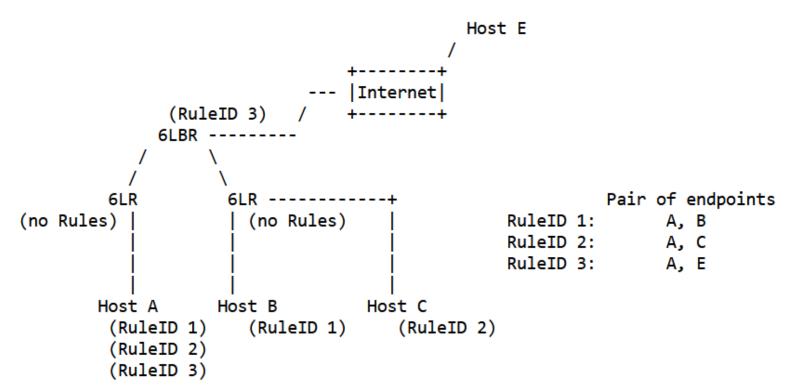

3.4.1. SRO

- Rules storage
 - All routers MUST store all the Rules
 - A host MUST store the Rules for its communication with other endpoints

```
Host E
               (RuleID 1)
               (RuleID 2)
               (RuleID 3)
              6LBR -
                                                            Pair of endpoints
(RuleID 1)
                       (RuleID 1)
                                                  RuleID 1:
                                                                   A, B
(RuleID 2)
                        (RuleID 2)
                                                  RuleID 2:
                                                                   A, C
(RuleID 3)
                        (RuleID 3)
                                                  RuleID 3:
                                                                   A, E
        Host A
                    Host B
                                    Host C
         (RuleID 1)
                        (RuleID 1)
                                        (RuleID 2)
         (RuleID 2)
         (RuleID 3)
```


3.4.2. TRO (I/II)

- Rules storage
 - A node MUST store the Rules for its communication with other endpoints
 - A 6LBR MUST store all the Rules in use in the network


3.4.2. TRO (II/II)

- New figure (and text) to illustrate the concepts in TRO
 - Similar to RFC 9008:

3.4.3. PRO

- Rules storage
 - A node MUST store the Rules for its communication with other endpoints
 - A 6LBR MUST store all the Rules in use in the network for communication with external nodes

4.5. Summary

Updated and relocated

Single-hop	Multihop							
		Mesh-Under						
	SRO	TRO	PRO					
SCHC Dispatch	•	IP-in-IP, 6LoRH, SCHC Dispatch						
see 4.1	see 4.1	see 4.2	see 4.3	see 4.4				

SCHC header

- "SCHC header" is now a concept defined in draft-ietfschc-architecture
 - Updated all previous "SCHC Header" instances
 - OLD:

– NEW:

Next steps

Ensure alignment with SCHC architecture draft

- Provide further details on RuleID management
 - E.g. when a RuleID needs to be unique within the SCHC over 15.4 network

Complete the examples in Appendix A

Comments/Questions?

draft-ietf-6lo-schc-15dot4-04

Carles Gomez

Universitat Politècnica de Catalunya (UPC) carles.gomez@upc.edu

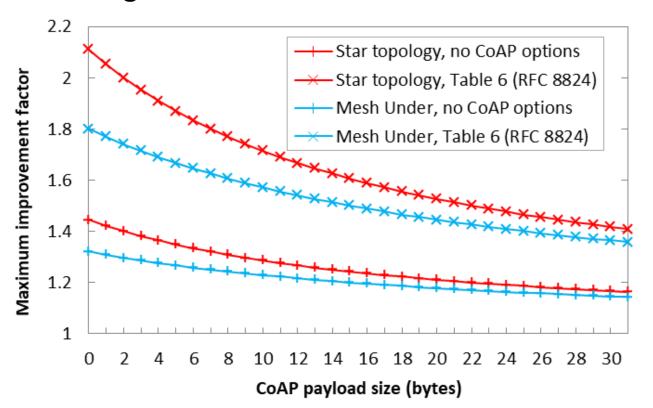
Ana Minaburo

Consultant anaminaburo@gmail.com

Introduction

Assumptions:

- Best case, global addr.
- CoAP
 - a) No header options
 - b) Table 6, RFC 8824


IPv6/UDP/CoAP header size

	IPv6/UDP (bytes)	CoAP (bytes)		TOTAL (bytes)	
		a)	b)	a)	b)
No compression	48	4	16	52	64
6Lo(WPAN) - RFC 6282	7	4	16	11	23
SCHC - RFC 8724, 8824	1	1	1	2	2

- SCHC: static context, a priori knowledge of header field values
- Theoretical battery lifetime improvement over IEEE 802.15.4 by a factor up to >2
 - Actual improvement will be lower, depending on device HW, MAC/adaptation/application layer settings, payload size, network topology, etc.

Introduction (II)

- Maximum battery lifetime improvement factor
 - Short MAC addresses, intra-PAN
 - E.g. a battery-operated sensor that periodically sends a message over IEEE 802.15.4

NOTE: actual improvement will be lower