IPv6 Query for Enabled In-situ OAM Capabilities

draft-ietf-6man-icmpv6-ioam-conf-state-02

Xiao Min
ZTE
Greg Mirsky
Ericsson

Recap of this draft

- This draft defines ICMPv6 extensions to achieve IOAM Capabilities Discovery in IPv6 Networks
- A companion document of RFC 9359
- Use RFC 4620 "IPv6 Node Information Queries" as basis
- For this Query mechanism, five IOAM Capabilities Objects are defined in this document:
- IOAM Tracing Capabilities Object
- IOAM Proof of Transit Capabilities Object
- IOAM Edge-to-Edge Capabilities Object
- IOAM DEX Capabilities Object
- IOAM End-of-Domain Object

Update since last IETF

- This draft was presented at IETF 117, David Lamparter raised good comments regarding amplification attack threat, a resolution to address David's comments was incorporated
- Some editorial changes were also incorporated
- Revised Abstract to make a stronger connection between RFC 9359 and this document
- Changed the terms from "Node IOAM Information Query" to "Node IOAM Request", from "Node IOAM Information Reply" to "Node IOAM Reply"
- Changed the reference to [I-D.ietf-ippm-ioam-ipv6options] that has been published as RFC 9486

Update since last IETF (Cont.1)

- New text in Security Considerations:
- An implementation that supports this specification MUST support an option of padding a Node IOAM Request packet to the Path MTU or the minimum IPv6 MTU [RFC8200], which can ensure that the Node IOAM Reply packet would not be larger than the invoking Node IOAM Request packet.
- The network operators can choose to enforce the padding option or not in their networks.

Update since last IETF (Cont.2)

- New text in Abstract:
- This document describes the application of the mechanism of discovering IOAM capabilities, described in RFC 9359 "Ping Enabled IOAM Capabilities", in IPv6 networks.

Next steps

- Ask for more reviews and comments
- Revise this draft to improve it
- WGLC on it

Thank you!

