Update on BRSKI-CLE: A Certificateless Enrollment Framework in BRSKI

draft-yan-anima-brski-cle-01

Lei YAN

IETF 118, November 2023

Issues received in the last meeting

- Issue 1 (from Steffen Fries): The cryptographic approach should be discussed with CFRG.
- Issue 2 (from Michael Richardson): COSE objects and ACE-EST should be compared with.

Issue 1 : The cryptographic approach should be discussed with CFRG.

- All the **mathematical** algorithm is **deleted** from the draft.
- The draft is changed to an enrollment **framework** based on Key Encapsulation Mechanism (**KEM**).
 - Considering the evolution towards quantum-safe algorithms
 - KEM-based authentication is **lightweight** than signature-based authentication
 - KEM-based authentication resulted in a speed increase of 25 ms, a saving of 71% compared with signature-based authentication ^[1].

[1] Samandari, J.; Gritti, C. Post-Quantum Authentication in the MQTT Protocol. J. Cybersecur. Priv.2023, 3, 416–434. https://doi.org/ 10.3390/jcp3030021

Issue 2: COSE objects and ACE-EST should be compared.

- The draft does not specify any **local credentials** any more.
 - This framework can issue:
 - Any lightweight credentials, such as CBOR Web Tokens (CWTs)
 - Any credential references
- The use case is clarified and detailed.
 - The CBOR encoded certificate chain is still heavy for the Class 1 constrained IoT devices (defined in RFC7228).
- All existing **authentication protocols** supporting the **KEM** mechanism are compared with.
 - EDHOC (used by ACE-EST)
 - IPsec
 - TLS

4

Use case

- The access gateway is required to authenticate ٠ every connected IoT device in the hospital.
 - Preventing medical data theft

Medical Data Theft Security Incident in hospital 5

- Medical Constrained IoT devices: •
 - RAM for authentication < 10 KB _
 - Total RAM = **8 KB** in extreme condition _
- This kind of constrained IoT devices are also • common in scenarios other than in the hospital.
 - Class 1 constrained devices: ~ 10 KB RAM (RFC7228)

Anesthesia Pumps

Syringe Pumps

Electrocardiogram Monitor

Intelligent Infusion Monitor

Examples of medical constrained IoT devices

Blood Cell Counter

Motivation

- The limited RAM resources make the Class 1 constrained IoT devices hard to use certificates.
- The CBOR encoded certificate chain is still heavy for the Class 1 constrained IoT devices.
 - The CBOR encoded certificate chain^[1]:
 - 4 length: ~ 4 KB
 - 2 length: ~ 1.5 KB.
- All existing enrollment protocols of BRSKI are based on **certificates**.
- This draft propose a **certificateless** enrollment **framework** for constrained IoT devices.

[1] I-D.ietf-cose-cbor-encoded-cert: "CBOR Encoded X.509 Certificates (C509 Certificates)"

Whose public key is used for Encapsulating in KEM: client end VS server end

- Client end:
 - A unique public key is required to be configured on every IoT device.
 - Less efficient in deployment when the amount of IoT devices is huge.
 - EDHOC (I-D.ietf-lake-edhoc) and IPsec (RFC 9370)
- Server end:

7

- Only one public key needs to be configured on the server end for dealing with an enormous amount of client ends (the IoT devices).
- More efficient in deployment
- This draft and TLS (I-D.wiggers-tls-authkem-psk and I-D.celi-wiggers-tls-authkem)
 - The client end is assumed to have previously known the server end's public key in [I-D.wiggers-tls-authkem-psk].
 - In the BRSKI scenario, a pledge cannot previously know a domain server's public key.
 - The client uses the certificate chain to authencate the server in [I-D.celi-wiggers-tls-authkem].
 - As BRSKI has already built trust between the pledge and the domain before enrollment, using public key is enough.

Another change

8

- EDHOC is used for the mutual authentication between the pledge and the registrar in BRSKI, as shown in [I-D.ietf-lake-authz].
 - The pledge's credential is supported transporting by **reference** rather than by value.
- A constrained IoT device does **not need to** configure a **public key to identify itself** for the whole bootstrapping process.

Basic protocol flow

++	+	+	++
 Pledge	 Regi	 strar	
	l Kegr		
++	+	++	++
 [imprint : 	finished]	 (A) Pledge's ID +	-
 (B) Public +	Key Request	 (B) Public Key +	
 <publ.< td=""><td></td><td> (C) Public <</td><td> Key +</td></publ.<>		 (C) Public <	 Key +
 (D) [Credent: +	-	 (D) [Credential +	 Request] >
 (E) <crede <</crede 	ential>	 (E) <credenti < + </credenti 	 +

[] Indicates messages protected using AC's public key. <> Indicates messages protected using a symmetric key.

Thank you! Looking for co-authors! **Questions**? It is welcome to make comments in the email list.