NIPC

non-IP control

Bart Brinckman
Rohit Mohan
Braeden Sanford
Silofication in IoT deployments

Proprietary stovepipes

- Onboarding: developed for home or personal area networks
- Control: Proprietary per app/device
- Telemetry/data: Proprietary per app/device

Apps and devices are developed hand in hand with network ‘gateways’, typically 1 app – 1 stack

Deep integration, heavy lift for every use case

Closed system, does not scale beyond a couple apps.

Standards-based approach

- Onboarding: app-based realtime/non-realtime
- Control: Policy-based (defined in the network)
- Telemetry/data: Structured API, data + meta-data

Standardized API’s allow the network to act as a platform for all IoT applications

APPs can integrate with devices regardless of wireless technology of use case

Open system, scales to many apps and devices.
Approach

Common APIs across radio technologies enables streamlined and accelerated integration.
Non IP Control (NIPC)

Perform operations on SCIM-provisioned devices or groups objects

SCIM Object
- User
- Group
- Device

Connectivity extensions
- BLE
- Zigbee
- Thread
- Wi-Fi

Application extensions
- Control
- Data

Security extension
- MUD

Connection
- Binding
- Connection

Data
- Attribute
- Subscription

Registration
- Topic
- File

NIPC operations
Example: BLE Advertisement (broadcast) from device A

- **BLE device A**: BLE Advertisement
- **Access Point & Controller**: SCIM onboarding request (SCIM object Device A) → SCIM onboarding response (SCIM object + Device ID)
 - POST /registration/topic {topic=adv, type=advertisement, id(s)}
- **Application**: /registration/topic response {SUCCESS}
 - Subscribe to topic=adv
 - Device A advertisement on topic=adv
 - Device A advertisement on topic=adv
Example: Attribute read/write from BLE device A

BLE device A

- BLE Connect {device MAC}

Access Point & Controller

- POST /connectivity/connection {id}

- BLE Connection established {device MAC, connection handle}

- BLE Service discovery {connection handle}

- BLE Service discovery {connection handle, services}

- BLE read {connection handle, characteristic}

- BLE read response {connection handle, characteristic, value}

- BLE write {connection handle, characteristic, value}

- BLE write response {connection handle, charateristic, value}

- BLE Disconnect {connection handle}

- BLE Disconnect response {connection handle}

Application

- GET /data/attribute {id, attribute}

- /data/attribute response {SUCCESS, id, attribute, value}

- PUT /data/attribute {id, attribute, value}

- /data/attribute response {SUCCESS, id, attribute, value}

- DELETE /connectivity/connection {id}

- /connectivity/connection response {SUCCESS, id}
Example: Attribute read/write from Zigbee device B

- Zigbee device B
- Access Point & Controller
- Application

Zigbee read {MAC address, attribute}

Zigbee write {MAC address, attribute, value}

Zigbee read response {MAC address, attribute, value}

Zigbee write response {MAC address, attribute, value}

POST /connectivity/binding {id}

/connectivity/binding response {SUCCESS, id, node-id, pan-id}

GET /data/attribute {id, attribute}

/data/attribute response {SUCCESS, id, attribute, value}

PUT /data/attribute {id, attribute, value}

/data/attribute response {SUCCESS, id, attribute, value}

SCIM onboarding request {SCIM object Device B}

SCIM onboarding response {SCIM object + Device ID}