Contributors

- Katsuhiro Horiba (SoftBank)
- Yuya Kawakami (SoftBank)
- Derek Yeung (Arrcus)
- Kalyani Rajaraman (Cisco)
Motivation

• draft-mhkk-dmm-srv6mup-architecture defines SRv6 Mobile User Plane (MUP) architecture for distributed mobility management

• This architecture integrates mobile user plane into SRv6 data plane
 • It does that by transforming the session information from the mobility management system to the necessary routing information

• As part of the architecture, it defines the following
 • Two new SRv6 Segment types of MUP Segment
 • A PE connects Direct and/or Interwork Segment
 • Two new Session Transformed routes
 • A MUP Controller advertises the session transformed routes
Motivation (Cont’d)

• draft-mhkk-dmm-srv6mup-architecture depicts the MUP segments in 5G specific example case:
 • Interwork Segment for N3RAN
 • N3 Interface between gNodeBs and UPFs on RAN side
 • Direct Segment for N6DN
 • N6 Interface between UPFs and Data Networks (DN) on DN side

• This draft defines a new SAFI known as BGP Mobile User Plane (MUP) SAFI to support the MUP Extensions of the architecture document
 • Also defines a new Extended Community
BGP MUP SAFI

- New SAFI to carry MUP routing information

- NLRI Format

+-----------------------------------+
| Architecture Type (1 octet) |
+-----------------------------------+
| Route Type (2 octets) |
+-----------------------------------+
| Length (1 octet) |
+-----------------------------------+
| RT specific (variable) |
+-----------------------------------+

- Architecture type defined: 3gpp-5g
BGP MUP SAFI (Cont’d)

- 4 new Routes Types define for BGP-MUP SAFI 3gpp-5g architecture type:
 - Interwork Segment Discovery Route
 - Direct Segment Discovery Route
 - Type 1 Session Transformed (ST) Route
 - Type 2 Session Transformed (ST) Route

- Route Types can be shared by any new architecture types defined in Future
BGP MUP SAFI (Cont’d)

• Two well known 5G specific segments of routing instances depicted:
 • N3RAN and N6DN routing instances in a PE
 • Interwork Segment Discovery Route associated with N3RAN routing instances MUP segment
 • Carries N3RAN prefix for gNodeB(es), Prefix SID attribute with the PE locater followed by GTP4/6.E function
 • Direct Segment Discovery Route associated with N6DN routing instances MUP segment
 • Carries Address of MUP Segment, Prefix SID attribute with the PE locater followed by End.DT4/6, DX2/4/6 function, etc., for example
BGP MUP SAFI (Cont’d)

- Type 1 ST Route imported by N6DN routing instances and carries UE reachability information, Tunnel Endpoint address of GTP, TEID, QFI for DL & an optional Source address
 - TEID, QFI and Tunnel Endpoint address are carried in the architecture specific part of the NLRI
 - Tunnel Endpoint address should be resolved using Interwork Segment Discovery route – extract locator and prefix SID
 - Forwarding SID for GTP4/6.E is generated based on the procedures mentioned in draft-ietf-dmm-srv6-mobile-uplane.txt
 - Source address is optional. If it is not present then the implementation manually configures it
BGP MUP SAFI (Cont’d)

- Type 2 ST Route imported by N3RAN routing instances and carries an Endpoint address and associated GTP Tunnel information for UL
 - TEID is carried in the architecture specific part of the NLRI
 - BGP MUP Extended community carries the MUP segment value present in the Direct Segment Discovery Route – Used to resolve appropriate Direct Segment routing instance and forward it to the address of the MUP Segment

- Route target extended communities are carried to ensure import happens properly
Draft Version 3

- Draft version 2 added support for End.M.GTP4/6.E for Direct Segment Route

- Draft version 3 added optional support for Source address to be carried on Type 1 ST Route
Next Steps

• Draft is in a pretty good shape
 • Version 3 of the draft is submitted
 • Multiple Interoperable implementation exists
 • Major Customer trials are underway

• Consider WG Adoption
Thank you