Recommendations for using Multiple IP Addresses in Benchmarking Tests

draft-lencse-bmwg-multiple-ip-addresses

Gábor LENCSE lencse@sze.hu (Széchenyi István University) – presenter
Keiichi SHIMA keiichi.shima@g.softbank.co.jp (SoftBank)

IETF 118, BMWG, November 6, 2023.
Outline

• Problem description: why testing with multiple IP addresses is needed?

• Recommended Solution
 – As for IPv4, using the limited IPv4 address range
 – As for IPv6, using the abundant IPv6 address range
 – Question of ranges to be used

• Working code
Problem Description: Conditions

- RFC 2544 has defined a test frame format with fixed IP addresses and fixed port numbers.
- RFC 4814 introduced pseudorandom port numbers, but it kept the usage of a single source and destination IP address pair when a single destination network is used.
- Receive Side Scaling (RSS) supports the receiving of multi million packets per second by distributing the load among CPU cores
 - Depending on implementation, the hash function includes:
 1st type: source IP, destination IP, source port, destination port
 2nd type: source IP, destination IP
Problem Description: Unfairness

• RFC 4814 pseudorandom port numbers + 1st RSS implementation
 – Works perfectly (port numbers ensure entropy)
 – All CPU cores are used, load is distributed approximately evenly

• RFC 4814 pseudorandom port numbers + 2nd RSS implementation
 – Gives poor results (no entropy is ensured as IP addresses are fixed)
 – Thus only two CPU cores are used (one core per direction)

• However, network interconnect devices using the 2nd RSS implementation work perfectly, when they forward Internet traffic (IP addresses ensure entropy)

→ Conditions for the laboratory tests should be improved!
Recommended Solution

• Basic idea: Let us use pseudorandom IP addresses!
 – This is the spirit of RFC 4814 applied to the IP addresses ⋆

• Problems to solve:
 – What ranges can be used?
 • There is scarcity in IPv4 addresses reserved for benchmarking
 – 198.18.0.0/15 was reserved for benchmarking
 • There is abundance in IPv6 addresses reserved for benchmarking
 – 2001:2::/48 was reserved for benchmarking
 – What ranges should be used?
 • A trade-off is pointed out
What IPv4 ranges can be used?

• Reserved: 198.18.0.0/15, it is to be cut into two halves:
 – Left side: 198.18.0.0/16 and Right side: 198.19.0.0/16

• RFC 2544 requirement:
 – First, the test suite SHOULD be run with a single source and destination address pair.
 • Typically used: 198.18.0.2/24 and 198.19.0.2/24
 – Then, the tests SHOULD be repeated using 256 different destination networks (chosen randomly)
 • Destination networks denoted by the 16-23 bits of the above network addresses: 198.18.R.0/24 and 198.19.R.0/24.
 → In this case, only the last 8 bits are available to describe multiple IP addresses
IPv4 Test Setup (multiple destination networks)

• .1 is for the tester; .2 to .254 can be used

```
198.18.0.2/24-198.18.0.254/24  198.19.0.2/24-198.19.0.254/24
\            /                        /          /
\          / Tester                  |
\        /                            |
+--------+-----------------------------+  |
|                |                            |
|                |                            |
|                |                            |
|                |                            |
+--------+-----------------------------+  |
|                |                            |
|                |                            |
|                |                            |
+--------+-----------------------------+  |
|                |                            |
198.18.0.1/24  |                            |
+-----------------------------+
```

Benchmarking Stateful NATxy Gateways
IPv4 Test Setup (single destination network)

• .0.1 is for the tester; .0.2 to .255.254 can be used

```
198.18.0.2/16-198.18.255.254/16  198.19.0.2/16-198.19.255.254/16
\ +---------------------------------------------------+ /
\ |                                                      |
+-------------|              Tester              |<------------+
|             |                                  |             |
|             +----------------------------------+             |
|                                                              |
|             +----------------------------------+             |
|             |                                  |             |
+------------>|        DUT: IPv4 router          |-------------+
198.18.0.1/16 |                                  | 198.19.0.1/16
+----------------------------------+
```
IPv6 Test Setup (in all cases)

- E.g., bits 56-63 can be used for 256 destination networks
What ranges should be used?

• On the one hand, the more IP addresses are used, the more entropy is ensured and thus the most even distribution of the load over the processing elements can be expected.

• However, on the other hand, the usage of multiple IP addresses has its costs: multiple Address Resolution Protocol (ARP for IPv4) or Neighbor Discovery Protocol (NDP, for IPv6) table entries are used.
 – Increasing them over a few thousands may have a deteriorating effect on the performance of the DUT.

• More research is needed to give a good recommendation...
Working Code

• As a proof of concept, the recommended solution has been implemented in **siitperf**.
 – free software under [GPL license](https://github.com/lencsegabor/siitperf), available from [GitHub](https://github.com/lencsegabor/siitperf)
 – Multiple IPv4 and IPv6 addresses are supported from commit number 165cb7f on September 6, 2023.
We would like to ask for feedback

• Do you agree that the highlighted problem really exist?
• Do you think that the proposed method can solve it?
• Do you have any idea what to change, add, etc.?
• All you comments and suggestions are welcome!