
BPF Memory Model

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team
Linux Plumbers Conference, BPF & Networking Summit, November 13, 2023

Presented by Alexei Starovoitov on behalf of Paul McKenney

Overview

l psABI and Memory Model

l BPF Memory Model Context

l BPF Instructions

l JITs Must Respect BPF Memory Model

l Validation: GCC Atomic Built-Ins

l Future Work

2

processor specific ABI (psABI)
3

All psABIs define:

• Function calling convention

• Register usage

• Stack usage and unwinding

• Type convention. ex: sizeof(void*)

• ELF object file format

• Relocations and linking

• Libraries

• Code model and address space <- this is not a Memory Model !

Goals of psABIs
4

x86, RISC-V, and all others psABIs:

• A manual for the compilers: generate compatible binary code

Goals of psABIs
5

x86, RISC-V, and all others psABIs:

• A manual for the compilers: generate compatible binary code

BPF psABI:

• A manual for the compilers: generate compatible binary code

• A manual for JITs: how to map BPF ISA to native ISA

BPF psABI
6

• It exists !

• JITs use it to translate BPF ISA to native ISA

• GCC and LLVM use it to compile C into BPF assembly

• Largely undocumented

• LLVM/GCC source code is a source of truth

• JITs source code is a source of truth

BPF Memory-Model Context
7

I want to concurrently access data:

1. Between BPF programs

2.Between BPF program and user space

3.Between BPF program and the kernel

How would I do that?

BPF Memory-Model Context
8

Just use Linux-kernel memory model (LKMM)

I want to concurrently access data:

1. Between BPF programs

2.Between BPF program and user space

3.Between BPF program and the kernel

How would I do that?

BPF Memory-Model Context
9

Just use Linux-kernel memory model (LKMM)

Other language MMs are a strict subset of LKMM

I want to concurrently access data:

1. Between BPF programs

2.Between BPF program and user space

3.Between BPF program and the kernel

How would I do that?

Flavors of Memory Models

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
Has No Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

10

Language Memory Model
(C, C++, LKMM, ...)

Instruction-Level BPF
Memory Model

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

Exists

Exists

Today

11

Flavors of Memory Models

Aside on Linux-Kernel Memory Model

l The Linux kernel uses assembly, C, and Rust

l LKMM relies not just on the language memory model, but also on strict
coding conventions:

- memory-barriers.txt “CONTROL DEPENDENCIES”

- rcu_dereference.rst

l Language MMs do not handle dependencies

- And hence are plagued by OOTA issues

- Therefore, a hardware-level model for BPF instruction set

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1780r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1916r0.pdf

12

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);
y.store(r1, relaxed);

r1 = y.load(relaxed);
x.store(r1, relaxed);

13

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);
y.store(r1, relaxed);

r1 = y.load(relaxed);
x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

14

Example OOTA, x == y == 0 initially

r1 = x.load(relaxed);
y.store(r1, relaxed);

r1 = y.load(relaxed);
x.store(r1, relaxed);

According to the mathematical core of the C and C++ memory models,
this code can result in x == y == 42!!!

But only in theory, not in practice!

15

Defining BPF Memory Model
16

• It exists !

• Largely undocumented

• LLVM source code is a source of truth

• JITs and interpreter source code is a source of truth

BPF Instructions

l BPF Atomic Instructions

l BPF Conditional Jump Instructions

l BPF Load instructions

17

BPF Atomic Instructions

l BPF_XCHG, BPF_CMPXCHG

l BPF_ADD, BPF_OR, BPF_AND, BPF_XOR

l BPF_FETCH with one of the above

18

BPF Atomic Instructions 1/3

l BPF_XCHG and BPF_CMPXCHG instructions are fully ordered

l All CPUs and tasks agree that all instructions preceding or following a given
BPF_XCHG or BPF_CMPXCHG instruction are ordered before or after,
respectively, that same instruction

- Consistent with Linux-kernel atomic_xchg() and atomic_cmpxchg(),
respectively

- Alternatively, consistent with the following:

l smp_mb(); atomic_cmpxchg_relaxed(); smp_mb();

19

BPF Atomic Instructions 2/3

l BPF_ADD, BPF_OR, BPF_AND, BPF_XOR instructions are
unordered

l CPUs and JITs can reorder these instructions freely

- Consistent with Linux-kernel atomic_add(), atomic_or(),
atomic_and(), and atomic_xor() APIs

20

BPF Atomic Instructions 3/3

l When accompanied by BPF_FETCH, BPF_ADD, BPF_OR,
BPF_AND, BPF_XOR instructions are fully ordered

l All CPUs and tasks agree that all instructions preceding or following a
given instruction adorned with BPF_FETCH are ordered before or after,
respectively, that same instruction

- Consistent with Linux-kernel atomic_fetch_add(),
atomic_fetch_or(), atomic_fetch_and(), and atomic_fetch_xor() APIs

21

BPF Conditional Jump Instructions

l Modifiers to BPF_JMP32 and BPF_JMP instructions:

- BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, BPF_JSGT,
BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, and BPF_JSLE

l Unconditional jump instructions (BPF_JA, BPF_CALL, BPF_EXIT)
provide no memory-ordering semantics

22

BPF Conditional Jump Instructions

l These modifiers to BPF_JMP32 and BPF_JMP instructions provide
weak ordering:

- BPF_JEQ, BPF_JGT, BPF_JGE, BPF_JSET, BPF_JNE, BPF_JSGT,
BPF_JSGE, BPF_JLT, BPF_JLE, BPF_JSLT, and BPF_JSLE

l Too-smart JITs might need to be careful

23

BPF Conditional Jump Instructions

l This weak ordering applies when:

- Either the src or dst registers depend on a prior load instruction (BPF_LD or
BPF_LDX), and

- There is a store instruction (BPF_ST or BPF_STX) before control flow converges,
and

- The restrictions outlined in the “CONTROL DEPENDENCIES” section of
Documentation/memory-barriers.txt are faithfully followed

l Compilers do not understand control dependencies, and happily break them.

l Optimizations involving conditional-move instructions requires the “before control
flow converges” restriction

24

Conditional Jump Example

r1 = READ_ONCE(x);
if (r1) {

WRITE_ONCE(y, 42);
}

r1 = x ll
r1 = *(u64 *)(r1 + 0)
if r1 == 0 goto LBB0_2
r1 = y ll
*(u64 *)(r1 + 0) = r2

LBB0_2:

https://godbolt.org/z/hh7n9eqrv

C
om

pi
le

25

Control-Dependency Breakage
r0 = READ_ONCE(*x);
if (r0) {
 WRITE_ONCE(*y, 1);
} else {
 WRITE_ONCE(*y, 1);
}

26

Control-Dependency Breakage
r0 = READ_ONCE(*x);
if (r0) {
 WRITE_ONCE(*y, 1);
} else {
 WRITE_ONCE(*y, 1);
}

r0 = READ_ONCE(*x);
WRITE_ONCE(*y, 1);

JIT or compiler
Optimization

27

Control-Dependency Breakage
r0 = READ_ONCE(*x);
if (r0) {
 WRITE_ONCE(*y, 1);
} else {
 WRITE_ONCE(*y, 1);
}

r0 = READ_ONCE(*x);
WRITE_ONCE(*y, 1);

Broken Dependency!!!

28

JIT or compiler
Optimization

BPF Conditional Jump Instructions

l Different hardware architectures order control dependencies in
different ways:

- Strongly ordered (x86, s390, …):
l Prior load instructions are ordered before later store instructions, courtesy of

TSO

- Weakly ordered (ARMv8, PowerPC, …):
l Control dependencies are tracked by hardware

29

BPF Conditional Jump Instructions

l What do you mean by “weak”???

- CPU 0’s control dependency is visible to CPU 1, and separately to
CPU2

- But CPU 0’s control dependency is not necessarily visible to code
spanning CPU 1 and 2

30

Example of Weakness in Play

WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);
if (r0) {
 // Control dependency
 WRITE_ONCE(*y, 1);
}

r0 = smp_load_acquire(y);
r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!

31

CPU 0 CPU 1 CPU 2

Example For Converging Control Flow

r1 = READ_ONCE(x);

if (r1)

 WRITE_ONCE(y, 1);

else

 WRITE_ONCE(y, 2);

WRITE_ONCE(z, 1); // Converged here

mov r1,(x)

mov r2,$2

cmov r1,r2,$1

mov (y),r2

mov (z),$1

Control
dependency
constrains
ordering

No ordering constraint!!!JI
T

us
es

 c
m

ov
Which is why control dependencies extend only to control-flow convergence!!!

32

BPF Load Instructions

l BPF_LD and BPF_LDX instructions

- If the value returned by a given load instruction is used to compute the address of
a later load or store instruction, address-dependency ordering is guaranteed

- If the value returned by a given load instruction is used to compute the value
stored by a given store instruction, data-dependency ordering is guaranteed

- These are used by RCU readers, which must faithfully follow the restrictions
outlined in Documentation/RCU/rcu_dereference.rst

l Compilers do not understand address or data dependencies, and happily break them.

l Address and data dependencies are weak, similar to control dependencies

33

BPF Load Instructions

l Different hardware architectures order address and data
dependencies in different ways:

- Strongly ordered (x86, s390, …):
l Prior load instructions are ordered before later load and store instructions,

courtesy of TSO

- Weakly ordered (ARMv8, PowerPC, …):
l Address and data dependencies are tracked by hardware

34

Example of Weakness in Play

WRITE_ONCE(*x, 1); r0 = READ_ONCE(*x);
// Data dependency
WRITE_ONCE(*y, r0);

r0 = smp_load_acquire(y);
r1 = READ_ONCE(*x);

Both r0 instances and r1 can all be zero!!!

35

CPU 0 CPU 1 CPU 2

JITs must respect BPF Memory Model

l Viable strategies:

- Preserve address, control, and data dependencies

l Just generate instructions that match the BPF assembly code most closely

l Put atomic_signal_fence(memory_order_seq_cst) everywhere

l Trace and explicitly preserve dependencies

- Order prior loads before later stores:

l JIT every BPF_LD and BPF_LDX into a target-machine load-acquire instruction
sequence

l Place at least one target-machine load-to-store memory-barrier instruction
between each BPF load/store instruction pair

- atomic_signal_fence(memory_order_acquire) works on x86

- Rely on source-level code having followed Linux-kernel coding standards

36

Discovering BPF Memory Model via GCC
Atomic Built-Ins

Note that GCC defined the built-ins, but this section uses only Clang/LLVM

37

GCC Atomic Memory Orders

l __ATOMIC_RELAXED: Relaxed ordering

l __ATOMIC_ACQUIRE: Acquire ordering

l __ATOMIC_CONSUME: Treated as acquire

l __ATOMIC_RELEASE: Release ordering

l __ATOMIC_ACQ_REL: Acquire/release ordering

l __ATOMIC_SEQ_CST: Sequential consistency

38

No BPF C/C++ Weak Orderings

l __ATOMIC_RELAXED: Relaxed ordering

l __ATOMIC_ACQUIRE, __ATOMIC_CONSUME, __ATOMIC_RELEASE,
__ATOMIC_ACQ_REL, __ATOMIC_SEQ_CST: Full ordering

l Revisit when BPF does acquire and release

39

GCC Full Memory Barriers

l __atomic_thread_fence(__ATOMIC_SEQ_CST)

l BPF has none, but it can emulate them:

- “BPF_ATOMIC | BPF_DW | BPF_STX” with an imm field of “BPF_ADD |
BPF_FETCH” and a src register value of zero

- Or: “lock *(u32 *)(r2 + 0) += r1”

- Call it bpf_mb() for short

40

GCC Atomic Loads

l __atomic_load_n() & __atomic_load()

l Relaxed ordering:

- BPF_LD or BPF_LDX

l Non-relaxed ordering:

- BPF_LD or BPF_LDX followed by bpf_mb()

Clang/LLVM does not yet support this

41

GCC Atomic Stores

l __atomic_store_n() & __atomic_store()

l Relaxed ordering:
- BPF_ST or BPF_STX

l Non-relaxed ordering:
- bpf_mb() followed by BPF_ST or BPF_STX

Clang/LLVM does not yet support this

42

GCC Atomic Exchange

l __atomic_exchange_n() & __atomic_exchange()

l No matter what ordering:

- “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of
“BPF_XCHG | BPF_FETCH”, which supplies full ordering

43

GCC Atomic Compare and Exchange

l __atomic_compare_exchange_n() &
__atomic_compare_exchange()

l No matter what ordering:

- “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of
“BPF_CMPXCHG | BPF_FETCH”, which supplies full ordering

44

GCC Atomic Fetch-Op

l __atomic_fetch_add(), __atomic_fetch_sub(), __atomic_fetch_and(), __atomic_fetch_xor()

- “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of “BPF_XXX |
BPF_FETCH”, which supplies full ordering, needed or not

- Where “XXX” is ADD, SUB, AND, and XOR, respectively

l __atomic_fetch_or(), __atomic_fetch_nand()

- Loop containing “BPF_ATOMIC | BPF_DW | BPF_STX'' with an immediate field of “BPF_CMPXCHG |
BPF_FETCH”, which supplies full ordering, needed or not

- Use BPF_OR or a combination of BPF_AND with best bit-complement code, respectively

Clang/LLVM does not yet support __atomic_fetch_nand()

45

GCC Atomic Op-Fetch

l __atomic_add_fetch(), __atomic_sub_fetch(), __atomic_and_fetch(),
__atomic_xor_fetch(), __atomic_or_fetch(), __atomic_nand_fetch()

- Implement in the same way as for atomic_fetch_xxx()

- Except that it is necessary to fix up return value to provide the after-operation
value

- Full ordering is supplied whether it is needed or not

Clang/LLVM does not yet support __atomic_nand_fetch()

46

GCC Miscellaneous Atomics

l __atomic_test_and_set()

- Implement the same as __atomic_exchange()

- Except casting the return value to boolean if needed

l __atomic_clear()
- Implement as an __atomic_store() of zero

Clang/LLVM does not yet support these

47

GCC Fences

l __atomic_thread_fence()

- Implement as bpf_mb()

l __atomic_signal_fence()

- Implement as the Linux-kernel barrier() macro

- Unless relaxed, in which case this is a no-op

Clang/LLVM does not yet support these

48

Complication: BPF Helper Ordering?

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

49

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

50

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g
in

 o
r o

ut
?

51

Complication: BPF Helper Ordering?

Language Memory Model
(C, C++, LKMM, ...)

BPF Instruction Set
(Proposing Memory Model)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

JIT

C-Language BPF Helper
(LKMM)

Hardware ISA Memory Model
(x86, ARMv8, RISC-V, ...)

Compiler

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

O
rd

er
in

g
in

 o
r o

ut
?

No ordering unless specified
by the definition of

the helper in question

52

BPF ISA extensions

l Possible additions:
- BPF_LDX_ACQ - load acquire

- BPF_STX_REL - store release store

- Full barrier
l Possibly one variant with I/O semantics and another variant having only

normal-memory semantics

l Normal-memory semantics (smp_mb()) is more urgent

53

For More Information
l “Instruction-Level BPF Memory Model”

- https://docs.google.com/document/d/1TaSEfWfLnRUi5KqkavUQyL2tThJXYWHS15qcbxIsFb0/edit?usp=sharing

l “IETF eBPF Instruction Set Specification, v1.0”

- https://www.ietf.org/archive/id/draft-thaler-bpf-isa-00.html

l “Towards a BPF Memory Model” (2021 BPF & Networking Summit at Linux Plumbers Conference)

- https://lpc.events/event/11/contributions/941/

l “”GCC Atomic Compiler Built-Ins”

- https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

l Linux kernel source tree: tools/memory-model, Documentation/memory-barriers.txt “CONTROL DEPENDENCIES”
section, Documentation/RCU/rcu_dereference.rst

l “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

- Chapter 15 (“Advanced Synchronization: Memory Ordering”)

- Appendic C (“Why Memory Barriers?”)

l https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

54

