Containing the
Cambrian Explosion in QUIC
Congestion Control

Ayush Mishra, Ben Leong

National University of Singapore

IETF 118, Prague
CCWG, 7" November 2023

On Safety and Deployability of a CCA

» So far, we've had discussions on determining if a CCA is safe
and deployable.

* While this is an important step, these checks should go beyond
the algorithm itself and apply to the implementations too.

* Our work shows that there Is already significant speciation
between implementations of standard congestion control
algorithms like CUBIC, Reno, and BBR in QUIC.

On Safety and Deployability of a CCA

 Let's say a CCA is safe and deployable. How well can we
expect these properties to propagate to all of its

Implementations?

« Case Study: QUIC

How well do the QUIC imp
BBR conform to t

e |n the context of 5033bis, t

ementations of CUBIC, Reno, and
neir kernel counterparts?

nis would mean determining the

deployabillity of a CCA implementation by measuring how close
It was to the safe and deployable version of that algorithm.

Measuring Conformance

 How do we measure If two implementations of a CCA are
similar?

* The fine-grained approach: compare cwnd graphs
Problem: too restrictive and unrealistic

* The course-grained approach: compare relative-fairness
Problem: misses finer algorithmic differences

* The middle ground: The Performance Envelope (PE)

Measuring the Performance Envelope

* The Performance Envelope (PE) metric is built on one key
iInsight: Different CCAs represent different trade-offs in the
network.

* We want to capture the trade off space in which an
Implementation operates.

 This trade off space can be multi-dimensional. The PEs
discussed in this talk will be two-dimensional (Throughput vs
Delay)

Measuring the Performance Envelope

>

throughput

delay

Measuring the Performance Envelope

throughput

Remove outliers
and construct a
convex hull from
the remaining data
points.

Throughput

delay

o tme Delay

Measuring the Performance Envelope

>

Performance <
Envelope! 3
c

|_

Delay

Measuring the Performance Envelope

Level of overlap with a
reference implementation
becomes a measure of
Conformance.

N

Overlap

Throughput

Conformance lies between
1 (complete overlap) and
0 (no overlap)

Delay

Measurement Results

Organization Stack CUBIC BBR Reno
Linux kernel TCP v v v
Facebook mvfst [6] v v v
Google chromium [8] v v X
Microsoft msquic [12] v X X
Cloudflare quiche [5] v X v
LiteSpeed lsquic [11] v v X
Go quicgo [9] v X v
H20 quicly [10] v X v
Rust quinn [14] v X v
Amazon Web Services s2n-quic [4] v X X
Alibaba xquic [3] v v v
Mozilla neqo [13] v X v

Benchmarked all QUIC stacks that were deployed,
open source, and implemented some CCA.

Measurement Results

Stack Type Conf
chromium® CUBIC 0.6
neqo CUBIC 0
quiche CUBIC 0.08
Xquic CUBIC 0.55
mvfstP BBR 0
Xquic BBR 0.15
Xquic Reno 0.38

We found 7 implementations
of standard CCAs that showed
poor conformance to their
kernel counterparts

e tcp-cubic

e neqo-cubic

14 4 . ®eg o
B | i ——
2 121 . RO A
= . o 8
= R D R
5 104 « ° o." e®
L . . ° % ? ®
g 81 . ..: ,
E 61 v .Q]

| 8 wpef
a1 e onirW 2%
- : .,\J'Q A . 3
2 , :

Throughput (Mbps)

20 25

30 35

Delay (ms)

40

45

(b) neqo CUBIC, Conf.=0

e tcp-bbr T ‘
187 o mvfst-bbr ¢
oof
16 !
14 4
12 1 LY
- -
L]
| %% . ﬂ'#
10 . - L ™
L]
81 . -
20 25 30 35 40 45 50

Delay (ms)

(e) mvfst BBR, Conf.= 0

20.0 .
e tcp-cubic . ‘;m..
175/ auiche-cubic " °. e
w
2150
£
& 12.51 .
£
© 10.01
3
g
g 157
5.04
2.5+ ; . . ;
30 35 40 45
Delay (ms)

(c) quiche CUBIC, Conf.= 0.08

e fcp-bbr & .
161 o xquic-bbr . s
—_ L) . s 9,
§ 14 - L] * “#d
= [e 4
512 .
[= 8
_51 L
g 10 .o o
= o
= ([]
-
8 4
. ']
20 30 40 50

Delay (ms)

(f) xquic BBR, Conf.=0.15

Impact: Subversion of Expectations

Well-known trend when CUBIC competes with BBR:
CUBIC gets more bandwidth in deep buffers,
BBR gets more bandwidth in shallow buffers

But this trend can change depending on the QUIC implementation!

My,
(.C,;O ".)7 & Sqaf"?);c,?‘:/{c "5 S‘;"{; 9’0;{., /Q’C‘ ?&fa 0?(-":’(- Q’-'d’fc

Co el il ol enle,
Ub“’(‘ b{ (be 06:' aéf (jéf (be é“’ C 6"(‘ éfc BBR wins

tcpbbr—.. N =

mvfst bbr........... O-BE

chromium bbr-.. - 06 'E-

Isquic bbr—.... ...-.. 0.4 g::

Xquic bbr-.. N
CUBIC wins

1 BDP buffer (expected to be red)

%
!-cb f)?ll/& S?U;O?’UQOJC é 5'(;,0 9’(!,-0 /{ffc 9{‘;’ /? ’79.&, 4’9’:,,
Cug; “0.5, by 45 %, N7 ‘f«fé’ % 3 %, %,C o,t “by,.

tcp bbr - | . | . .
mvfstbbr-....=......

chromium bbr

]
xquic bbr

5 BDP buffer (expected to be blue)

Isquic bbr -

BBR wins

0.6

0.4

0.2

oney indybnouay |

CUBIC wins

12

Where does this non-conformance
come from?

« With BBR, it's often improperly set parameters (mvfst, xquic)
« Other parts of the transport stack (Spurious loss detection in quiche)

« Often, even implementing the CCA correctly is not always enough (xquic
Reno)

quiche CUBIC original quiche CUBIC modified
Conformance = 0.08 Conformance = 0.55

13

Putting It all in context

* |n Its current scope, 5033bis recommends evaluating the
deployabillity of a congestion control algorithm.

* There is a possible direction where we attach a “standard
implementation” to the RFC of every deployable congestion
control algorithm and then measure the conformance of every
other implementation against this standard implementation.

* How do we deal with differently tuned CCAs?
 How do we police the deployment of safe CCAs?

Thank you for your time!

