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On Safety and Deployability of a CCA

» So far, we've had discussions on determining if a CCA is safe
and deployable.

* While this is an important step, these checks should go beyond
the algorithm itself and apply to the implementations too.

* Our work shows that there Is already significant speciation
between implementations of standard congestion control
algorithms like CUBIC, Reno, and BBR in QUIC.



On Safety and Deployability of a CCA

 Let's say a CCA is safe and deployable. How well can we
expect these properties to propagate to all of its

Implementations?

« Case Study: QUIC

How well do the QUIC imp
BBR conform to t

e |n the context of 5033bis, t

ementations of CUBIC, Reno, and
neir kernel counterparts?

nis would mean determining the

deployabillity of a CCA implementation by measuring how close
It was to the safe and deployable version of that algorithm.



Measuring Conformance

 How do we measure If two implementations of a CCA are
similar?

* The fine-grained approach: compare cwnd graphs
Problem: too restrictive and unrealistic

* The course-grained approach: compare relative-fairness
Problem: misses finer algorithmic differences

* The middle ground: The Performance Envelope (PE)



Measuring the Performance Envelope

* The Performance Envelope (PE) metric is built on one key
iInsight: Different CCAs represent different trade-offs in the
network.

* We want to capture the trade off space in which an
Implementation operates.

 This trade off space can be multi-dimensional. The PEs
discussed in this talk will be two-dimensional (Throughput vs
Delay)



Measuring the Performance Envelope
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Measuring the Performance Envelope

throughput

Remove outliers
and construct a
convex hull from
the remaining data
points.

Throughput

delay

o tme Delay



Measuring the Performance Envelope
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Measuring the Performance Envelope

Level of overlap with a
reference implementation
becomes a measure of
Conformance.
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Conformance lies between
1 (complete overlap) and
0 (no overlap)

Delay



Measurement Results

Organization Stack CUBIC BBR Reno
Linux kernel TCP v v v
Facebook mvfst [6] v v v
Google chromium [8] v v X
Microsoft msquic [12] v X X
Cloudflare quiche [5] v X v
LiteSpeed lsquic [11] v v X
Go quicgo [9] v X v
H20 quicly [10] v X v
Rust quinn [14] v X v
Amazon Web Services s2n-quic [4] v X X
Alibaba xquic [3] v v v
Mozilla neqo [13] v X v

Benchmarked all QUIC stacks that were deployed,
open source, and implemented some CCA.



Measurement Results

Stack Type Conf
chromium® CUBIC 0.6
neqo CUBIC 0
quiche CUBIC 0.08
Xquic CUBIC 0.55
mvfstP BBR 0
Xquic BBR 0.15
Xquic Reno 0.38

We found 7 implementations
of standard CCAs that showed
poor conformance to their
kernel counterparts
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Impact: Subversion of Expectations

Well-known trend when CUBIC competes with BBR:
CUBIC gets more bandwidth in deep buffers,
BBR gets more bandwidth in shallow buffers

But this trend can change depending on the QUIC implementation!
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Where does this non-conformance
come from?

« With BBR, it's often improperly set parameters (mvfst, xquic)
« Other parts of the transport stack (Spurious loss detection in quiche)

« Often, even implementing the CCA correctly is not always enough (xquic
Reno)

quiche CUBIC original quiche CUBIC modified
Conformance = 0.08 Conformance = 0.55
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Putting It all in context

* |n Its current scope, 5033bis recommends evaluating the
deployabillity of a congestion control algorithm.

* There is a possible direction where we attach a “standard
implementation” to the RFC of every deployable congestion
control algorithm and then measure the conformance of every
other implementation against this standard implementation.

* How do we deal with differently tuned CCAs?
 How do we police the deployment of safe CCAs?



Thank you for your time!



