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First principles approach to evaluating CCAs

e Score CCAs on behaviors known to cause problems

e Ultimate goal: complete and well defined robust measures of CC safety
o Disallow behaviors that might harm other Internet users
m Discourage behaviors that cause self harm or user surprises
o ldeally any CCA that passes all tests would be unconditionally safe to deploy

e Current draft lists 13 criteria

e Each criteria is a stand alone test of CCA properties

o They place bounds on the shapes of the control functions
o Many failures can be discovered by inspecting designs

e No explicit comparisons between CCAs
o But the scores might be compared



Document status

e SafeCC is a “working draft” intended for expert readers

o No Background or tutorials
o Very terse language without a lot of explanation
o Some of the material in this presentation is not in the I-D yet

e | hope to migrate many parts into RFC5033bis
e Other parts are likely to land elsewhere (perhaps RFC5033bisbis)

o Too much research is needed
o  They might unnecessarily stall RFC5033bis



Upper bound on self induced loss

e Goal is to protect all protocols in shared queues, not just other transports

o DNS, SYN exchanges and all other single packet exchanges are particularly exposed
m Often rely on simple RTO without prior RTT measurement

e Current draft says 2% (but does not describe test conditions)
o Reno and CUBIC with SACK are out of conformance
m  Old Reno without SACK is probably OK
m  25% or 33% loss on contrived networks (Somebody test this please)
m  Unacceptably high for widespread use
o | would rather say 0.1%
m But this is probably unrealistically low

e The current draft is not up to date with my thinking

o  We will need a published, well thought out justification for final text
o Probably experimental results and a model in a separate paper



Steady state loss

e The relationship between loss probability and data rate must be monotonic
o Otherwise it is likely that there are multiple stable rates for flows sharing the same bottleneck
o and secondary symptoms such as bimodal data rates and late comer (dis)advantage

e Control period (1/frequency) should scale with RTT

o i.e. upper and lower bounds on number of RTTs between CC adjustments
o  Control frequency should not be a function of data rate (at any fixed RTT)

m Otherwise the CCA is unlikely to age well as the Internet continues to get faster
o Note that Reno and CUBIC fail this criteria

e Similar principles apply to queueing delay and CE marks



Consider queueing delay

e All CCAs must limit queueing delay to some appropriate bound

o Otherwise they might cause large standing queues, aka Bufferbloat
m e.g. on any overbuffereed lossless bottleneck

e Note that ECN support in the CCA is insufficient
o Bottlenecks that don't support AQM or ECN would still suffer

e Reno and CUBIC are non-compliant
o And cause a lot of harm to other better behaved CCAs



The minRTT problem

e Robust minRTT estimators are a known to be problematic
o Provably unsolvable [Jaffe1981NetTrans]
m Aflow can not detect when the minRTT has been inflated by a standing queue caused
by other flows
o Demonstrated failure for Vegas TCP
Some version of this problem applies to ALL current and future CCAs
o BBR RTTprobing is designed to overcome this problem
m but some small risk might remain
e Grounds for wanting some form of AQM everywhere
o FUTURE: we may need a uniform minRTT estimator, akin to the RTO estimator
m Standardized for all CCAs and protocols

e Also must handle non-stationary minimum delay
m Leo Satellites
m Routing changes and path diversity



Freedom from starvation

e Large flows must not starve small and starting flows

o The distinction between small and large must self scale
o Must apply for all mixed traffic, with multiple CCAs
o  This will probably create a weak form of fairness implicit in balancing “large" vs “small”
o Efficiency (filling arbitrary networks) is explicitly NOT required
m Efficiency has been proven to conflict with freedom from starvation [Arun2022SigComm]

e More important than Fairness or Efficiency on many networks

e One approach is easy

o Forbid CCAs from needlessly maintaining persistent full queues

o  This might eventually become grounds for disqualifying Reno and CUBIC
e Much more research is needed

o | expect RFC5033bis to say something informal and somewhat vague
o This is likely to require a separate paper



Concept of “under adverse conditions” (UAC)

e Linguistic shorthand

o Generally statements of monotonicity over all network conditions
m  Simple concept
m Complicated to say precisely
m Brutal to repeat everywhere it is needed

o AKkin to epsilon-delta limit proofs in mathematics

e Imagine testing across the “entire” parameter space

o Bandwidth, RTT, queue space, cross traffic, [random] loss, CE marks, etc
m Many orders of magnitude in all dimensions

e For all starting conditions and all small incremental changes
o the stated property must hold



Expand RFC5033's definition of congestion collapse

e RFC5033bis currently only requires RTO with exponential backoff

e | plan to contribute two new constraints
o Overhead must not increase UAC
m No duplicate data at the receiver
o No regenerative congestion UAC
m Congestion always delays future transmissions
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Overhead must not increase UAC

Underlying problem that caused the 1986-87 Internet collapses
o Jacoboson88 provided a solution

Observable at the receiver and precisely defined
o Total bytes arriving / total_content_bytes must not increase UAC

o Rerun the same workload under different conditions
m Total bytes received should be constant, independent of network conditions

Many failures can be discovered by thought experiments on designs
Well understood in the transport area (and our documents)
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No Regenerative Congestion UAC

e Never increase presented load under UAC
o Retransmission and all future transmissions must be delayed

e (bservable and precisely defined at the sender
o Bytes sent vs time must shift to the right UAC

e Probably understood well enough in the transport area
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Open questions and Next Steps

e Contributing text (and issues) to 5033bis
o | am at a bit of a loss for generating mergeable PRs

e Justifying some bound on self induced loss
o 2%, 1%, 0.5% ....

e Many unresolved questions about transactions and startup behavior
o Slowstarts have to be partially exempt from steady state rules
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Additional Material



Congestion collapse also applies to applications

e Application designers often think:
o “TCP will protect the network from congestion collapse”
o They do not consider congestion collapse to be their problem
e Applications (and libraries) often fail badly
o Pervasive use of starting over on failures without saving partial data
m Duplicate data at the receiver UAC
m Probably not important for small objects
o  Anecdotal reports of failures caused by SW installs and other large objects
e Future Work: Application requirements to avoid congestion collapse
o  Out of charter for the time being
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Apply Congestion Collapse tests to the entire stack

e Application bench tests
o Run a fixed application workload
o Vary network parameters across entire space
o Flag conditions that cause increased overhead
e Can “easily” fix egregious failures
o E.g. restart from partial data
e However none can be totally fixed

o Signalling (e.g. SYN and SSL) must be repeated
o Unread data in receiver’s resequencing queue must be repeated

e We can’t use MUST
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Material vs Non-material

e RFC2119 language is too “absolute”
o These have to be strongly suggested criteria
e |[s a “violation” important?
o The term “material” comes from US legal (court) language

e Current draft language for all criteria
o SHOULD but MUST document and score exceptions

e Also need non-absolute language for “requirements”
o  Currently using “criteria”
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