
Safe Congestion Control
draft-mathis-ccwg-safecc-00

Matt Mathis - IETF 118
Freelance

First principles approach to evaluating CCAs

● Score CCAs on behaviors known to cause problems
● Ultimate goal: complete and well defined robust measures of CC safety

○ Disallow behaviors that might harm other Internet users
■ Discourage behaviors that cause self harm or user surprises

○ Ideally any CCA that passes all tests would be unconditionally safe to deploy
● Current draft lists 13 criteria
● Each criteria is a stand alone test of CCA properties

○ They place bounds on the shapes of the control functions
○ Many failures can be discovered by inspecting designs

● No explicit comparisons between CCAs
○ But the scores might be compared

2

Document status

● SafeCC is a “working draft” intended for expert readers
○ No Background or tutorials
○ Very terse language without a lot of explanation
○ Some of the material in this presentation is not in the I-D yet

● I hope to migrate many parts into RFC5033bis
● Other parts are likely to land elsewhere (perhaps RFC5033bisbis)

○ Too much research is needed
○ They might unnecessarily stall RFC5033bis

3

Upper bound on self induced loss

● Goal is to protect all protocols in shared queues, not just other transports
○ DNS, SYN exchanges and all other single packet exchanges are particularly exposed

■ Often rely on simple RTO without prior RTT measurement
● Current draft says 2% (but does not describe test conditions)

○ Reno and CUBIC with SACK are out of conformance
■ Old Reno without SACK is probably OK
■ 25% or 33% loss on contrived networks (Somebody test this please)
■ Unacceptably high for widespread use

○ I would rather say 0.1%
■ But this is probably unrealistically low

● The current draft is not up to date with my thinking
○ We will need a published, well thought out justification for final text
○ Probably experimental results and a model in a separate paper

4

Steady state loss

● The relationship between loss probability and data rate must be monotonic
○ Otherwise it is likely that there are multiple stable rates for flows sharing the same bottleneck
○ and secondary symptoms such as bimodal data rates and late comer (dis)advantage

● Control period (1/frequency) should scale with RTT
○ i.e. upper and lower bounds on number of RTTs between CC adjustments
○ Control frequency should not be a function of data rate (at any fixed RTT)

■ Otherwise the CCA is unlikely to age well as the Internet continues to get faster
○ Note that Reno and CUBIC fail this criteria

● Similar principles apply to queueing delay and CE marks

5

Consider queueing delay

● All CCAs must limit queueing delay to some appropriate bound
○ Otherwise they might cause large standing queues, aka Bufferbloat

■ e.g. on any overbuffereed lossless bottleneck
● Note that ECN support in the CCA is insufficient

○ Bottlenecks that don't support AQM or ECN would still suffer
● Reno and CUBIC are non-compliant

○ And cause a lot of harm to other better behaved CCAs

6

The minRTT problem
● Robust minRTT estimators are a known to be problematic

○ Provably unsolvable [Jaffe1981NetTrans]
■ A flow can not detect when the minRTT has been inflated by a standing queue caused

by other flows
○ Demonstrated failure for Vegas TCP
○ Some version of this problem applies to ALL current and future CCAs
○ BBR RTTprobing is designed to overcome this problem

■ but some small risk might remain
● Grounds for wanting some form of AQM everywhere

○ FUTURE: we may need a uniform minRTT estimator, akin to the RTO estimator
■ Standardized for all CCAs and protocols

● Also must handle non-stationary minimum delay
■ Leo Satellites
■ Routing changes and path diversity

7

Freedom from starvation

● Large flows must not starve small and starting flows
○ The distinction between small and large must self scale
○ Must apply for all mixed traffic, with multiple CCAs
○ This will probably create a weak form of fairness implicit in balancing “large" vs “small”
○ Efficiency (filling arbitrary networks) is explicitly NOT required

■ Efficiency has been proven to conflict with freedom from starvation [Arun2022SigComm]
● More important than Fairness or Efficiency on many networks
● One approach is easy

○ Forbid CCAs from needlessly maintaining persistent full queues
○ This might eventually become grounds for disqualifying Reno and CUBIC

● Much more research is needed
○ I expect RFC5033bis to say something informal and somewhat vague
○ This is likely to require a separate paper

8

Concept of “under adverse conditions” (UAC)

● Linguistic shorthand
○ Generally statements of monotonicity over all network conditions

■ Simple concept
■ Complicated to say precisely
■ Brutal to repeat everywhere it is needed

○ Akin to epsilon-delta limit proofs in mathematics
● Imagine testing across the “entire” parameter space

○ Bandwidth, RTT, queue space, cross traffic, [random] loss, CE marks, etc
■ Many orders of magnitude in all dimensions

● For all starting conditions and all small incremental changes
○ the stated property must hold

9

Expand RFC5033's definition of congestion collapse

● RFC5033bis currently only requires RTO with exponential backoff
● I plan to contribute two new constraints

○ Overhead must not increase UAC
■ No duplicate data at the receiver

○ No regenerative congestion UAC
■ Congestion always delays future transmissions

10

Overhead must not increase UAC

● Underlying problem that caused the 1986-87 Internet collapses
○ Jacoboson88 provided a solution

● Observable at the receiver and precisely defined
○ Total_bytes_arriving / total_content_bytes must not increase UAC
○ Rerun the same workload under different conditions

■ Total bytes received should be constant, independent of network conditions
● Many failures can be discovered by thought experiments on designs
● Well understood in the transport area (and our documents)

11

No Regenerative Congestion UAC

● Never increase presented load under UAC
○ Retransmission and all future transmissions must be delayed

● Observable and precisely defined at the sender
○ Bytes sent vs time must shift to the right UAC

● Probably understood well enough in the transport area

12

Open questions and Next Steps

● Contributing text (and issues) to 5033bis
○ I am at a bit of a loss for generating mergeable PRs

● Justifying some bound on self induced loss
○ 2%, 1%, 0.5%

● Many unresolved questions about transactions and startup behavior
○ Slowstarts have to be partially exempt from steady state rules

13

Additional Material

14

Congestion collapse also applies to applications

● Application designers often think:
○ “TCP will protect the network from congestion collapse”
○ They do not consider congestion collapse to be their problem

● Applications (and libraries) often fail badly
○ Pervasive use of starting over on failures without saving partial data

■ Duplicate data at the receiver UAC
■ Probably not important for small objects

○ Anecdotal reports of failures caused by SW installs and other large objects
● Future Work: Application requirements to avoid congestion collapse

○ Out of charter for the time being

15

Apply Congestion Collapse tests to the entire stack

● Application bench tests
○ Run a fixed application workload
○ Vary network parameters across entire space
○ Flag conditions that cause increased overhead

● Can “easily” fix egregious failures
○ E.g. restart from partial data

● However none can be totally fixed
○ Signalling (e.g. SYN and SSL) must be repeated
○ Unread data in receiver’s resequencing queue must be repeated

● We can’t use MUST

16

Material vs Non-material

● RFC2119 language is too “absolute”
○ These have to be strongly suggested criteria

● Is a “violation” important?
○ The term “material” comes from US legal (court) language

● Current draft language for all criteria
○ SHOULD but MUST document and score exceptions

● Also need non-absolute language for “requirements”
○ Currently using “criteria”

17

