Safe Congestion Control

draft-mathis-ccwg-safecc-00
Matt Mathis - IETF 118
Freelance

First principles approach to evaluating CCAs

e Score CCAs on behaviors known to cause problems

e Ultimate goal: complete and well defined robust measures of CC safety
o Disallow behaviors that might harm other Internet users
m Discourage behaviors that cause self harm or user surprises
o ldeally any CCA that passes all tests would be unconditionally safe to deploy

e Current draft lists 13 criteria

e Each criteria is a stand alone test of CCA properties

o They place bounds on the shapes of the control functions
o Many failures can be discovered by inspecting designs

e No explicit comparisons between CCAs
o But the scores might be compared

Document status

e SafeCC is a “working draft” intended for expert readers

o No Background or tutorials
o Very terse language without a lot of explanation
o Some of the material in this presentation is not in the I-D yet

e | hope to migrate many parts into RFC5033bis
e Other parts are likely to land elsewhere (perhaps RFC5033bisbis)

o Too much research is needed
o They might unnecessarily stall RFC5033bis

Upper bound on self induced loss

e Goal is to protect all protocols in shared queues, not just other transports

o DNS, SYN exchanges and all other single packet exchanges are particularly exposed
m Often rely on simple RTO without prior RTT measurement

e Current draft says 2% (but does not describe test conditions)
o Reno and CUBIC with SACK are out of conformance
m Old Reno without SACK is probably OK
m 25% or 33% loss on contrived networks (Somebody test this please)
m Unacceptably high for widespread use
o | would rather say 0.1%
m But this is probably unrealistically low

e The current draft is not up to date with my thinking

o We will need a published, well thought out justification for final text
o Probably experimental results and a model in a separate paper

Steady state loss

e The relationship between loss probability and data rate must be monotonic
o Otherwise it is likely that there are multiple stable rates for flows sharing the same bottleneck
o and secondary symptoms such as bimodal data rates and late comer (dis)advantage

e Control period (1/frequency) should scale with RTT

o i.e. upper and lower bounds on number of RTTs between CC adjustments
o Control frequency should not be a function of data rate (at any fixed RTT)

m Otherwise the CCA is unlikely to age well as the Internet continues to get faster
o Note that Reno and CUBIC fail this criteria

e Similar principles apply to queueing delay and CE marks

Consider queueing delay

e All CCAs must limit queueing delay to some appropriate bound

o Otherwise they might cause large standing queues, aka Bufferbloat
m e.g. on any overbuffereed lossless bottleneck

e Note that ECN support in the CCA is insufficient
o Bottlenecks that don't support AQM or ECN would still suffer

e Reno and CUBIC are non-compliant
o And cause a lot of harm to other better behaved CCAs

The minRTT problem

e Robust minRTT estimators are a known to be problematic
o Provably unsolvable [Jaffe1981NetTrans]
m Aflow can not detect when the minRTT has been inflated by a standing queue caused
by other flows
o Demonstrated failure for Vegas TCP
Some version of this problem applies to ALL current and future CCAs
o BBR RTTprobing is designed to overcome this problem
m but some small risk might remain
e Grounds for wanting some form of AQM everywhere
o FUTURE: we may need a uniform minRTT estimator, akin to the RTO estimator
m Standardized for all CCAs and protocols

e Also must handle non-stationary minimum delay
m Leo Satellites
m Routing changes and path diversity

Freedom from starvation

e Large flows must not starve small and starting flows

o The distinction between small and large must self scale
o Must apply for all mixed traffic, with multiple CCAs
o This will probably create a weak form of fairness implicit in balancing “large" vs “small”
o Efficiency (filling arbitrary networks) is explicitly NOT required
m Efficiency has been proven to conflict with freedom from starvation [Arun2022SigComm]

e More important than Fairness or Efficiency on many networks

e One approach is easy

o Forbid CCAs from needlessly maintaining persistent full queues

o This might eventually become grounds for disqualifying Reno and CUBIC
e Much more research is needed

o | expect RFC5033bis to say something informal and somewhat vague
o This is likely to require a separate paper

Concept of “under adverse conditions” (UAC)

e Linguistic shorthand

o Generally statements of monotonicity over all network conditions
m Simple concept
m Complicated to say precisely
m Brutal to repeat everywhere it is needed

o AKkin to epsilon-delta limit proofs in mathematics

e Imagine testing across the “entire” parameter space

o Bandwidth, RTT, queue space, cross traffic, [random] loss, CE marks, etc
m Many orders of magnitude in all dimensions

e For all starting conditions and all small incremental changes
o the stated property must hold

Expand RFC5033's definition of congestion collapse

e RFC5033bis currently only requires RTO with exponential backoff

e | plan to contribute two new constraints
o Overhead must not increase UAC
m No duplicate data at the receiver
o No regenerative congestion UAC
m Congestion always delays future transmissions

10

Overhead must not increase UAC

Underlying problem that caused the 1986-87 Internet collapses
o Jacoboson88 provided a solution

Observable at the receiver and precisely defined
o Total bytes arriving / total_content_bytes must not increase UAC

o Rerun the same workload under different conditions
m Total bytes received should be constant, independent of network conditions

Many failures can be discovered by thought experiments on designs
Well understood in the transport area (and our documents)

11

No Regenerative Congestion UAC

e Never increase presented load under UAC
o Retransmission and all future transmissions must be delayed

e (bservable and precisely defined at the sender
o Bytes sent vs time must shift to the right UAC

e Probably understood well enough in the transport area

12

Open questions and Next Steps

e Contributing text (and issues) to 5033bis
o | am at a bit of a loss for generating mergeable PRs

e Justifying some bound on self induced loss
o 2%, 1%, 0.5%

e Many unresolved questions about transactions and startup behavior
o Slowstarts have to be partially exempt from steady state rules

13

Additional Material

Congestion collapse also applies to applications

e Application designers often think:
o “TCP will protect the network from congestion collapse”
o They do not consider congestion collapse to be their problem
e Applications (and libraries) often fail badly
o Pervasive use of starting over on failures without saving partial data
m Duplicate data at the receiver UAC
m Probably not important for small objects
o Anecdotal reports of failures caused by SW installs and other large objects
e Future Work: Application requirements to avoid congestion collapse
o Out of charter for the time being

15

Apply Congestion Collapse tests to the entire stack

e Application bench tests
o Run a fixed application workload
o Vary network parameters across entire space
o Flag conditions that cause increased overhead
e Can “easily” fix egregious failures
o E.g. restart from partial data
e However none can be totally fixed

o Signalling (e.g. SYN and SSL) must be repeated
o Unread data in receiver’s resequencing queue must be repeated

e We can’t use MUST

16

Material vs Non-material

e RFC2119 language is too “absolute”
o These have to be strongly suggested criteria
e |[s a “violation” important?
o The term “material” comes from US legal (court) language

e Current draft language for all criteria
o SHOULD but MUST document and score exceptions

e Also need non-absolute language for “requirements”
o Currently using “criteria”

17

