
SVTA Configuration
Interface

IETF/CDNi Metadata Model Extensions Update

November 2023(IETF 118)

Metadata Model Extension Drafts
• CDNI WG Drafts

• draft-ietf-cdni-protected-secrets-metadata-00 replaces:
draft-rosenblum-cdni-protected-secrets-metadata

• draft-ietf-cdni-cache-control-metadata-00 replaces:
draft-power-cdni-cache-control-metadata

• draft-ietf-cdni-edge-control-metadata-00 replaces:
draft-siloniz-cdni-edge-control-metadata

• New Individual submissions

• draft-power-metadata-expression-language-00

• draft-goldstein-processing-stages-metadata-00

2

Protected Secrets Metadata
● draft-ietf-cdni-protected-secrets-metadata-00

● Addressed feedback from Kevin Ma. Significantly:
○ Lots of language cleanup, RFC2119 compliant language for requirement levels
○ HashiCorp store types now denoted in the MI object name
○ IANA Considerations added
○ Fixed links to external SVTA documents
○ Normative & Informative References: Cleaned up

● Work remaining:
○ Sequence diagrams corresponding to workflow examples
○ Do we eliminate the FCI wrapper objects and use the MI objects directly as

Capabilities on the advertisement side? Needs discussion.

3

Cache Control Metadata
● draft-ietf-cdni-cache-control-metadata-00

● Addressed all the feedback from Kevin Ma. Significantly:
○ MI.CachePolicy: clarified definitions of the internal and external properties.
○ MI.StaleContentCachePolicy: clarified “revalidating” vs “refreshing” and

renamed failed-refresh-ttl to failed-revalidation-delta-seconds
with clearer description.

○ Reorganized all the examples:
■ Each MI object definition has a minimal example
■ A new Informative Examples section illustrates the use of these MI objects in

context of other structures such as Processing Stages.
○ IANA Considerations added
○ Fixed links to external SVTA documents
○ Normative & Informative References: Cleaned up, with Processing Stages

moved to Informative.

4

Edge Control Metadata
● draft-ietf-cdni-edge-control-metadata-00

● Addressed all the feedback from Kevin Ma. Significantly:
○ MI.CrossoriginPolicy:

■ “apply-to-all-methods” default behavior changed and renamed to
“preflight-only”. Definition that MI.CrossoriginPolicy affects all HTTP methods by
default.

○ MI.AccessControlAllowOrigin:
■ “allow-list” type definition changed as MI.PatternMatch was not suitable enough.

○ Reorganized examples:
■ Separate section for MI.CrossoriginPolicy examples
■ A new Informative Examples section illustrates the use some MI objects in

context of other structures such as Processing Stages
○ Some questions about MtS and StD responded in the mailing list.
○ IANA Considerations added
○ Fixed links to external SVTA documents
○ Normative & Informative References: Cleaned up

5

Metadata Expression Language (MEL)
● draft-power-metadata-expression-language-00

● Provides a syntax with a rich set of variables, operators, and built-in functions to
facilitate use cases within the extended CDNI metadata model:

○ Match Expressions - Expressions that evaluate to a Boolean are used to match
against an HTTP header value and/or query param so that metadata can be
applied conditionally.

○ Value Expressions - Enable the dynamic construction of a value to be used in
scenarios such as constructing a cache key, setting an HTTP response header,
rewriting a request URI, or dynamically generating a response body.

● This is NOT a programming language!

6

MEL: Variables & Built-In Functions

7

MEL: Examples

8

Match Expression evaluating multiple
request headers:

Value Expression constructing a response
header from concatenated request headers:

Value Expression setting cache key to the
lower-cased request URI:

MEL: Error Handling
● Compile-Time Errors

○ To ensure reliable service, all CDNI metadata configurations MUST be validated
for syntax errors before they are ingested into a dCDN.

○ If errors are detected in a new configuration, the configuration MUST be
rejected.

○ Examples:
■ Unknown MEL variable name referenced in an expression
■ Unknown MEL operator, keyword, or functions referenced in an expression
■ Incorrect number of arguments used in an expression operator or function
■ Incorrect type of argument used in an expression operator or function

● Run-Time Errors
○ If a runtime error is detected when processing a request, the request SHOULD be

terminated, and an HTTP 500 'Internal Server Error' returned to the caller.
○ Examples:

■ Failure to allocate memory when evaluating a MEL expression
■ Incorrect runtime argument type in a MEL expression 9

MEL: FCI Capabilities Advertisement

● Since implementing the full MEL specification may be complex and onerous, a
mechanism is provided for a dCDN to advertise what portions of the MEL standard it
supports (if any).

● FCI.SupportedMELFeatures can be provided within an FCI Capabilities
Advertisement object for a given footprint.

● FCI.SupportedMELFeatures allows the dCDN to advertise support for specific:
○ MEL keywords
○ MEL operators
○ MEL variables
○ MEL built-in functions

10

Processing Stages Metadata
● draft-goldstein-processing-stages-metadata-00

● Processing Stages Metadata is designed to leverage the Metadata Expression
Language (MEL) to address common CDN and Open Caching requirements for:
○ Conditional application of caching rules.
○ Transformations of HTTP requests and responses.

● Defines four stages in the request processing pipeline, where conditional matching
and transformations can be applied at any of the stages.

● This is NOT a programming language! But it does provide structured if-else constructs.

11

Processing Stages Flow
Allows metadata rules to be applied conditionally at
a specific stage in the pipeline, based on matching
elements of HTTP requests & responses.

 Typical stage-specific processing use cases:

• Specialized cache policies and access controls
based on complex evaluations of request
headers and URIs.

• Request Transformations such as HTTP header
modifications or URI rewrites.

• Response Transformations such as suppression of
or additions to origin response status codes or
headers.

• Modification of cached content prior to sending
to client.

• Generating of Synthetic Responses.

clientRequest - Rules run on the inbound client
request prior to further processing.

originRequest - Rules run prior to making a request to
the origin on a cache miss.

originResponse - Rules run after response is received
from the origin and before being placed in cache.

clientResponse - Rules run prior to sending response to
the client. If response is from cache, rules are applied
to the response retrieved from cache prior to sending
to the client.

Processing Stages Object Model

13

MatchGroups in each stage array are processed in order.

Within each MatchGroup, the if-rule is always processed. If
the ExpressionMatch evaluates to true, stage processing is
terminated. Otherwise, else-if-rules are processed in order,
with processing terminated at the first entry where the
MatchExpression evaluates to true.

In all cases, processing is terminated at any StageRule and
enclosing MatchGroup that generates a SyntheticResponse
or denies access.

ClientRequest Stage Example

14

{
 "generic-metadata-type": "MI.ClientRequestStage",
 "generic-metadata-value": {
 "match-groups": [
 {
 "if-rule": {
 "match": {
 "expression": "req.h.user-agent *= '*Mobile*'"
 },
 "stage-metadata": {
 "generic-metadata": [
 {
 "generic-metadata-type": "MI.SyntheticResponse",
 "generic-metadata-value": {
 "headers": [
 {
 "name": "content-type",
 "value": "text/plain"
 },
 {
 "name": "X-custom-response-header",
 "value": "some static value"
 }
],
 "response-status": "405",
 "response-body": "'Sorry, Access to resource ' .
 req.uri . ' not allowed'",
 "body-is-expression": true
 }
 }
]
 }
 }
 }
]
 }
}

● Example examines the user agent of
inbound HTTP request from client.

● A MEL Match Expression is used to test if
the user agent is from a mobile device. If
so, a synthetic response is generated
with a 405 status code and custom
headers.

● A MEL Value Expression is used to
synthesise response body text.

OriginRequest Stage Example

15

{
 "generic-metadata-type": "MI.OriginRequestStage",
 "generic-metadata-value": {
 "match-groups": [
 {
 "if-rule": {
 "stage-metadata": {
 "generic-metadata": [
 {
 "generic-metadata-type": "MI.HeaderTransform",
 "generic-metadata-value": {
 "add": [
 {
 "name": "X-custom-header1",
 "value": "header-value 1"
 },
 {
 "name": "X-custom-header2",
 "value": "header-value 2"
 }
],
 "delete": [
 "Authorization",
 "Accept-Language"
]
 }
 }
]
 }
 }
 }
]
 }
}

● Example uses a HeaderTransform to
modify request headers on requests
made to the origin. The absence of a
match expression means that the
if-rule is always applied.

● The HeaderTransform illustrates use of
the add and delete properties to add
and remove HTTP headers.

OriginResponse Stage Examples

16

{
 "generic-metadata-type": "MI.OriginResponseStage",
 "generic-metadata-value": {
 "match-groups": [
 {
 "if-rule": {
 "match": {
 "expression": "resp.status == 200"
 },
 "stage-metadata": {
 "generic-metadata": [
 {
 "generic-metadata-type": "MI.CachePolicy",
 "generic-metadata-value": {} < success policy/ttl >
 }
]
 }
 },
 "else-if-rules": [
 {
 "match": {
 "expression": "resp.status == 503 or resp.status == 504"
 },
 "stage-metadata": {
 "generic-metadata": [
 {
 "generic-metadata-type": "MI.CachePolicy",
 "generic-metadata-value": {}
 }
]
 }
 }
]
 }
]
 }
}

● Example uses if/else construct to
apply different Cache Policies
depending on the HTTP response
code received from origin.

● Can be expanded to contain as
many else-if-rules blocks as needed.

Conclusion

Based on the contents of this presentation, Can the CDNI working group accept these two
new documents as a Working Group Draft?

● draft-power-metadata-expression-language-00

● draft-goldstein-processing-stages-metadata-00

17

