

Analysing the Impact of the Subtle Differences between AEADs on Protocol Security

Cas Cremers*

Alexander Dax* Charlie Jacomme[‡]

Mang Zhao*

- * CISPA Helmholtz Center for Information Security
- [‡] INRIA Paris

Setting: Protocol Analysis

Proving protocols secure

Discovering Attacks on Protocols

Classic Approach

Manual cryptographic proofs

Our Research Area

Automated Analysis

- Started in the 90s
- Big technical progress in recent years
- Used for large scale protocol analysis, e.g., TLS1.3, WPA2, EMV, LAKE.

We use the Tamarin Prover!

Authenticated Encryption with Associated Data

Authenticated Encryption with Associated Data

AEAD is complex!

AEAD is complex!

Many ways to misuse and misunderstand AEADs

11

Our Approach

AEAD Security in practice

We identify three big theoretical classes, that also allow to capture most practical attacks:

- Integrity & Privacy
- Collision Resistance
- Nonce Reuse Resistance

Concrete AEAD	Integrity and Privacy	Full Collision Resistance	Nonce Misuse Resistance	
XSalsa20-Poly1305	•	X	Xor of plaintexts	
AES-GCM	1	×	\mathbf{X} Forgeability + xor of plaintexts	
ChaCha20-Poly1305	1	×	Xor of plaintexts	
OCB3	1	×	\checkmark Forgeability + equality of blocks	
EtM (unrelated keys)	1	×	× Encryption dependent	
AES-CCM	1		X Xor of plaintexts	
AES-EAX	1		Xor of plaintexts	
EtM (related keys)	1	1	× Encryption dependent	
CAU-C4	1	1	\times Forgeability + Xor of plaintexts	
AES-GCM-SIV	1	×	/	
CAU-SIV-C4			1	

 \checkmark : proven in the cited work(s).

• : we conjecture that this holds, but do not know of a proof.

 $\pmb{\times}$: does not hold, with reference or explanation of counterexample.

Our theoretical models of AEAD weaknesses

Weaknesses in the main classes:

- Integrity & Privacy weakness
- Collisions
- Nonce Reuse

Additional AEAD misuses:

For completion

- Decryption Misuse
- Tag Misuse
- Commit

Each weakness (class)

- has potentially multiple variants
- is modelled as an attacker capability
- can be combined in arbitrary fashion with the other classes

Case Study Methodology: Two Approaches

Targeted Approach:

Check the protocol in the closest scenario from the real world

Preemptive Approach:

Check the protocol in all possible AEAD threat models

Case Study Methodology: Two Approaches

Targeted Approach:

Check the protocol in the closest scenario from the real world, by extracting the info from the real world (in)-security of the concrete AEAD scheme used (see table)

Suitable for protocol analysis if:

• the concrete AEAD construction is known

Results:

• Is there currently an attack on the protocol?

Concrete AEAD	Integrity and Privacy	Full Collision Resistance	Nonce Misuse Resistance	
XSalsa20-Poly1305		X	Xor of plaintexts	
AES-GCM	1	×	\checkmark Forgeability + xor of plaintexts	
ChaCha20-Poly1305	1	×	X Xor of plaintexts	
OCB3	1	X	X Forgeability + equality of blocks	
EtM (unrelated keys)	1	×	× Encryption dependent	
AES-CCM	1		Xor of plaintexts	
AES-EAX	1		Xor of plaintexts	
EtM (related keys)	1	1	× Encryption dependent	
CAU-C4	1	1	X Forgeability + Xor of plaintexts	
AES-GCM-SIV	1	X	/	
CAU-SIV-C4	1	1	1	

✓ : proven in the cited work(s).
● : we conjecture that this holds, but do not know of a proof.
X : does not hold, with reference or explanation of counterexample.

Case Study Methodology: Two Approaches

Preemptive Approach:

Check the protocol in all possible AEADs threat models

Suitable for protocol analysis if:

 one wants to find the requirements of the AEAD for a given protocol

Results:

- Minimal threat models that lead to potential attack
- Strongest threat models under which the protocol remains secure

AEAD_Wrapper(Model):

Run all combinations automatically and report the results

Case Studies: Targeted Approach

Protocol	YubiHSM	SFrame	FB Message Franking	
Attacked property	Key Secrecy	Authentication	Reporting	
AEAD instance	AES-CCM	AES-GCM, EtM CTR	AES-GCM	
Attack Model	Nonce Misuse	Тад	Collision	
Time	2s	<1s	1s	

Content agreement: Do all people within a group see the same set of messages?

Protocol	GPG SED	GPG SEIPDv2	Saltpack	Web Push API	WhatsApp	Scuttlebutt
Property	Content Agreement	Content Agreement	Content Agreement	Server Accountability	Content Agreement	Content Agreement
AEAD instance	PGP-CFB	AES-OCB	XSalsa20-Poly1305	AES-GCM	EtM CBC	XSalsa20-Poly1305
Assigned Class	Collision	Collision	Collision	Collision	Collision	Collision
Status	Yes, but deprecated	Infeasible	Infeasible	Reported	Reported	Reported

The full automated Tamarin analysis took less than 2 hours!

Take-Away and Summary

Formal Methods are useful in Protocol Design and Analysis!

New Insight when using Authenticated Encryption within Protocols:

- New relations between AEAD properties
- Classification of Protocol vulnerabilities caused by AE
 - May be useful for *draft-irtf-cfrg-aead-properties*

(First!) Automated analysis of protocols that rely on AEADs

- Useful during protocol design
- Automatic detection of vulnerabilities/unwanted behavior caused by AEAD
- Extendable!

Alexander Dax: <u>alexander.dax@cispa.de</u> Artifact: <u>https://github.com/AutomatedAnalysisOf/AEADProtocols</u> Paper: <u>https://www.usenix.org/conference/usenixsecurity23/presentation/cremers-protocols</u>

https://tamarin-prover.github.io/

Usenix 2023 Distinguished Paper Award!

Formal security protocol analysis

Reality

Since early 1990's: two main approaches:

Computational

Prove probability of attack is negligible Detailed models of encryption / signature

Symbolic

Focus on logical parts of the protocol design Treat encryption / signature as black box

Formal security protocol analysis

Reality

Computational

Prove probability of attack is negligible Detailed models of encryption / signature Focus on logical parts of the protocol design Treat encryption / signature as black box

Symbolic -

Our AEAD analysis using the Tamarin prover

Classify AEAD notions and attacks

Gather relations between the existing AEAD notions and properties ...

...and prove the missing ones

Figure 3: The relation between integrity and privacy for AEAD.

We identify three big theoretical classes, that also allow to capture most practical attacks:

- Integrity & Privacy
- Collision Resistance
- Nonce Reuse

