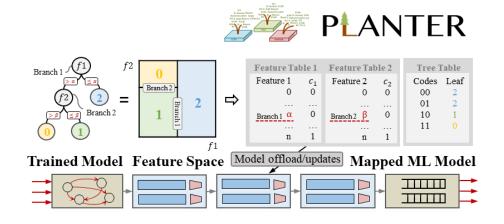
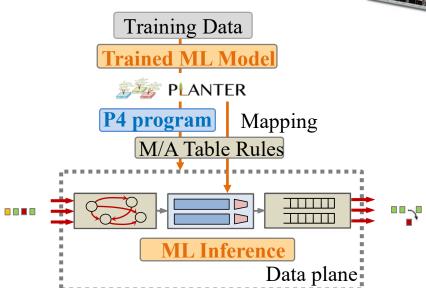


P4Pir: In-Network Analysis for Smart IoT Gateways

Mingyuan Zang*, Changgang Zheng§, Lars Dittmann*, and Noa Zilberman§


*Technical University of Denmark, [§]University of Oxford


* 🖂 {minza@dtu.dk, ladit@dtu.dk}, § 🖂 {changgang.zheng@eng.ox.ac.uk, noa.zilberman@eng.ox.ac.uk}

IIsy ^[1], Planter ^[2]

- A trained ML model \rightarrow programmable network devices
- Support >11 ML models (+50 variants): Bayes, SVM, DT, NN, ...
- Running on Intel Tofino switch, AMD FPGA, NVIDIA DPU, ...
- Line-rate performance

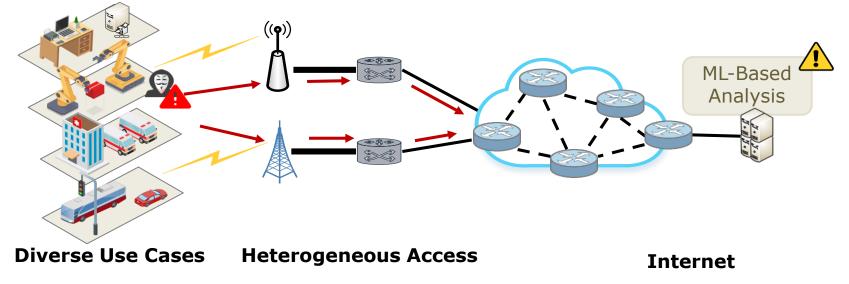
[1] C. Zheng et al., "Ilsy: Practical In-Network Classification," arXiv preprint arXiv:2205.08243, 2022
[2] C. Zheng et al., "Automating In-Network Machine Learning," arXiv preprint arXiv:2205.08824, 2022

Can In-Network Classification bring benefits to traffic analysis in the Internet of Things (IoT) networks?

5G Requirements

IoT Security

Extremely low latency requirements Emerging attack variants e.g. Process automation (latency<50ms)^[1] \rightarrow Threat to network infrastructure


Distributed Devices

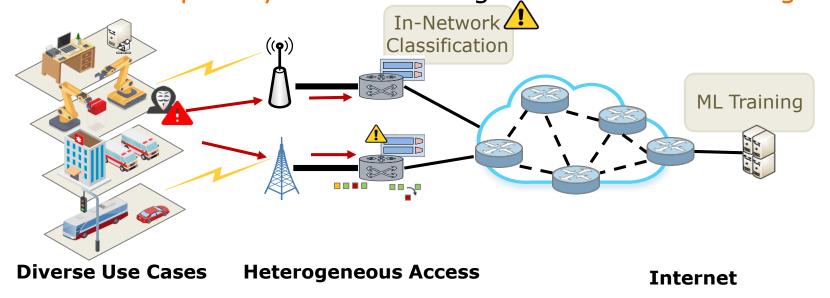
Limited computing resources

 \rightarrow Lack of security measures

\rightarrow Fast spreading threats with changing patterns

Typical Solution: Cloud-based services are limited in fast reaction

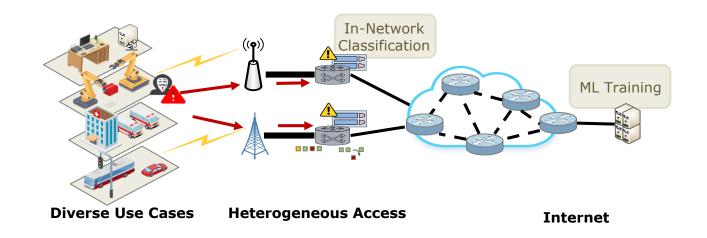
[1] "Service requirements for the 5G system (3GPP TS 22.261 version 16.14.0 Release 16)," 3GPP, Standard, Apr. 2021.



5G RequirementsIoT SecurityDistributed DevicesExtremely low latency requirementsEmerging attack variantsLimited computing resourcese.g. Process automation (latency<50ms)^[1]→ Threat to network infrastructure→ Lack of security measures

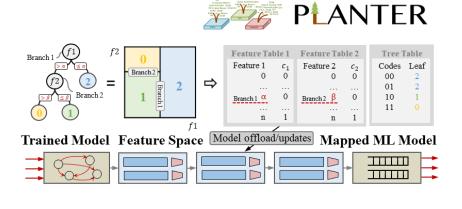
\rightarrow Fast spreading threats with changing patterns

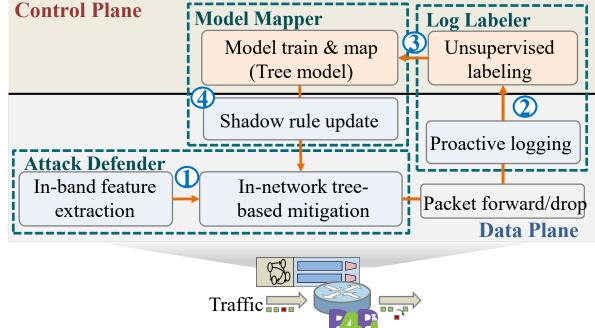
Our Solution: Offload ML capability to network edge devices for fast mitigation



[1] "Service requirements for the 5G system (3GPP TS 22.261 version 16.14.0 Release 16)," 3GPP, Standard, Apr. 2021.

- Cheap IoT gateway devices?
- Continuous defense? (24×7 security operation)
- Distributed deployment?





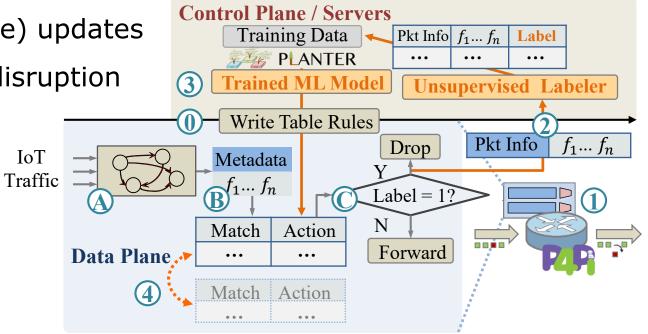
Proposed Design P4Pir

Solution: Real-time traffic analysis with in-network classification

- In-network classification on cheap device (P4Pi P4 in RPi)
- Tree-based ML for lightweight deployment
- Runtime ML updates for continuous defense

M. Zang et al., "Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways," IEEE Internet of Things Journal, 2023

IETF 118 Prague 7



Proposed Design P4Pir

Solution: Runtime reconfiguration for in-network model

- Digest-based logging
- Proactive labeling & retraining
- Hitless shadow M/A rule (classification rule) updates
- Avoid function recompilation/forwarding disruption

M. Zang et al., "Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways," IEEE Internet of Things Journal, 2023

DŤ

15

[1] S. Laki et al., "P4Pi: P4 on Raspberry Pi for networking education," SIGCOMM Comput. Commun. Rev., vol. 51, no. 3, p. 17–21, 2021

ACC

F1

RF

0.989

0.985

DETECTION ACCURACY ON DATASET CICIDS 2017. SCAN→DOS SCAN→BOT^{*} SCAN P4Pir P4Pir Init Base Base ACC 0.987 0.604 0.932 0.900 0.923 DT F1 0.984 0.568 0.868 0.776 0.820

TABLE III

Proposed Design P4Pir

Prototype

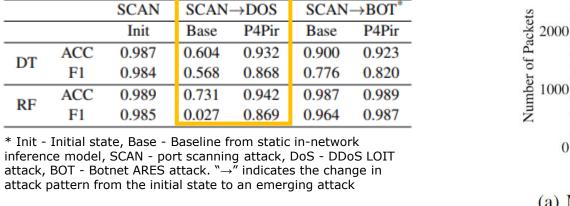
P4Pi^[1] (Raspberry Pi 4 Model B), Dell EMC Edge Gateway 5200

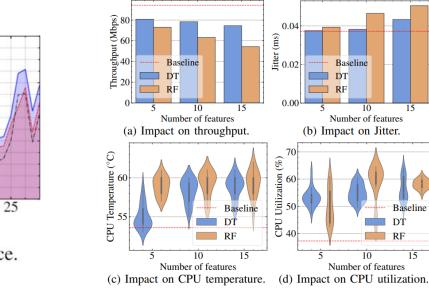
Challenge I: Continuous Defense

Performance

>30% accuracy \uparrow , real-time mitigation, negligible jitter, 8% \uparrow on CPU utilization •

Normal + Attack

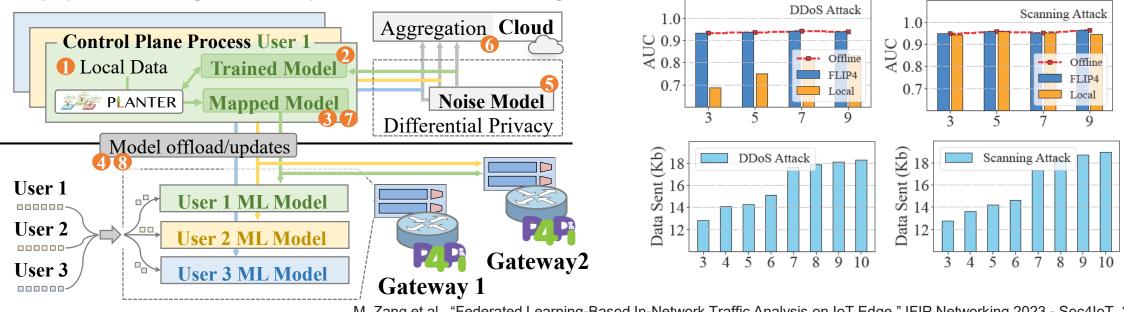

P4Pir Mitigated


15

Time (sec)

(a) Mitigation performance.

Attack



Proposed Design *FLIP4*

Solution: Federated learning-based in-network classification:

- In-network classification in distributed IoT gateways
- Federated ML training & updates
- Privacy-preserving model parameters sharing

M. Zang et al., "Federated Learning-Based In-Network Traffic Analysis on IoT Edge," IFIP Networking 2023 - Sec4IoT, 2023

In-network classification brings benefits to IoT scenarios:

- Feasible on cheap IoT gateway devices
- Swift analysis and reaction to detected incidents
- Scalable to distributed devices

Further work:

- Optimized resources?
- More services?

Q Open-source codes:

[1] C. Zheng et al., "Ilsy: Practical In-Network Classification," arXiv:2205.08243, 2022

[2] C. Zheng et al., "Automating In-Network Machine Learning," arXiv:2205.08824, 2022

[3] M. Zang et al., "P4Pir: In-Network Analysis for smart IoT gateways," Proceedings of the SIGCOMM '22 Poster and Demo Sessions, 2022

[4] M. Zang et al., "Towards Continuous Threat Defense: In-Network Traffic Analysis for IoT Gateways," IEEE Internet of Things Journal, 2023

[5] M. Zang et al., "Federated Learning-Based In-Network Traffic Analysis on IoT Edge," IFIP Networking - Sec4IoT, 2023[6] X. Hong et al., "LOBIN: In-Network Machine Learning for Limit Order Books," IEEE HPSR, 2023

We acknowledge the support from VMware, EU Horizon SMARTEDGE (101092908), Otto Mønsted Foundation, Nordic University Hub on Industrial IoT (HI2OT) by NordForsk.

We thank Radostin Stoyanov (Oxford), Damu Ding (Oxford), Eder Ollora Zaballa (DTU), Tomasz Koziak (DTU) for help with experimental setups and valuable discussions and feedbacks.