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mzu In-Network Classification

IIsy [11, Planter [2]

« A trained ML model —» programmable network devices

« Support >11 ML models (+50 variants): Bayes, SVM, DT, NN, ...

 Running on Intel Tofino switch, AMD FPGA, NVIDIA DPU, ...
« Line-rate performance
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[1] C. Zheng et al., “lisy: Practical In-Network Classification,” arXiv preprint arXiv:2205.08243, 2022
[2] C. Zheng et al., “Automating In-Network Machine Learning,” arXiv preprint arXiv:2205.08824, 2022

9 November 2023

IETF 118 Prague 2



%g Eiciecon [

UNIVERSITY OF
SCIENCE OXFORD

HE

Can In-Network Classification bring benefits to

traffic analysis in the Internet of Things (IoT) networks?
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== IoT Network — What's different? %g e
> ([ [ OXFORD
5G Requirements [IoT Security Distributed Devices
Extremely low latency requirements Emerging attack variants Limited computing resources

e.g. Process automation (latency<50ms)itl — Threat to network infrastructure = — Lack of security measures

— Fast spreading threats with changing patterns

Typical Solution: Cloud-based services are limited in fast reaction

A\

ML-Based
Analysis

Diverse Use Cases Heterogeneous Access Internet

1] “Service requirements for the 5G system (3GPP TS 22.261 version 16.14.0 Release 16),” 3GPP, Standard, Apr. 2021.
IETF 118 Prague 4

9 November 2023



2% IoT Network - What's different? %g EIGEEhnG [

SCIENCE OXFORD

“
5G Requirements [IoT Security Distributed Devices
Extremely low latency requirements Emerging attack variants Limited computing resources

e.g. Process automation (latency<50ms)tl — Threat to network infrastructure = — Lack of security measures

— Fast spreading threats with changing patterns

Our Solution: Offload ML capability to network edge devices for fast mitigation
In-Network
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Diverse Use Cases Heterogeneous Access Internet

1] “Service requirements for the 5G system (3GPP TS 22.261 version 16.14.0 Release 16),” 3GPP, Standard, Apr. 2021.
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- Cheap IoT gateway devices?

- Continuous defense? (24x7 security operation)

- Distributed deployment?

- In-Network
%(L£> L\ Classification
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ML Training
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Diverse Use Cases Heterogeneous Access Internet
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Proposed Design P4Pir

Solution: Real-time traffic analysis with in-network classification
« In-network classification on cheap device (P4Pi — P4 in RPi)

« Tree-based ML for lightweight deployment

Control Plane | Model Mapper -I,-o-g-i;l;;l-e; ----- :
. . N\ 1
« Runtime ML updates for continuous defense | [ Model train & map Unsupervised |
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M. Zang et al., “Towards Continuous Threat Defense: In-Network Traffic Analysis for [0oT Gateways,” IEEE Internet of Things Journal, 2023
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Proposed Design P4Pir

Solution: Runtime reconfiguration for in-network model
« Digest-based logging

* Proactive labeling & retraining

. . - ) Control Plane / Servers
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M. Zang et al., “Towards Continuous Threat Defense: In-Network Traffic Analysis for [0oT Gateways,” IEEE Internet of Things Journal, 2023
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Challenge I: Continuous Defense

Proposed Design P4Pir

Prototype
« P4Pjll]l (Raspberry Pi 4 Model B), Dell EMC Edge Gateway 5200
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Performance
« >30% accuracy M, real-time mitigation, negligible jitter, 8% /1 on CPU utilization
TABLE III Eso Do
DETECTION ACCURACY ON DATASET CICIDS 2017. = 60 z (B
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g 2000r 11 o
o ACC 0987 0604 0932 0900 0923 = DI Mt sad o Bl S oootemem e B
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| E60
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inference model, SCAN - port scanning attack, DoS - DDoS LOIT 5 15 25 E MY W Bascline | = 50f° — N Baseline -
attack, BOT - Botnet ARES attack. "—" indicates the change in Time (sec) ;55 [ 3 DT - W DT
attack pattern from the initial state to an emerging attack 3 [ RF QA0 3 RF
(a) Mitigation performance. 5 ) s 5 0 is

Number of features
(c) Impact on CPU temperature.

[1] S. Laki et al., “P4Pi: P4 on Raspberry Pi for networking education,” SIGCOMM Comput. Commun. Rev., vol. 51, no. 3, p. 17-21, 2021
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Number of features
(d) Impact on CPU utilization.
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Proposed Design FLIP4

Solution: Federated learning-based in-network classification:
« In-network classification in distributed IoT gateways
 Federated ML training & updates

« Privacy-preserving model parameters sharing
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M. Zang et al., “Federated Learning-Based In-Network Traffic Analysis on loT Edge,” IFIP Networking 2023 - Sec4loT, 2023
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In-network classification brings benefits to IoT scenarios:
- Feasible on cheap IoT gateway devices
- Swift analysis and reaction to detected incidents

- Scalable to distributed devices

Further work: Q Open-source codes:

- Optimized resources?

- More services?
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