A (quick) Overview of the AI4ME project and compute requirements for the COIN Research Group
9 November 2023

Rajiv Ramdhany (BBC)
Nick Race (Lancaster University)
Daniel King (Lancaster University)
The British Broadcasting Corporation, is the United Kingdom’s public service broadcaster.

- Founded in 1922; one of the oldest and largest broadcasters in the world.
- **BBC R&D**: research and innovation in on every aspect of the broadcast chain, from Audiences, Production and Distribution

Some of the major technology innovations and contributions by the BBC:

- **First Public Television Broadcast** in the world (1936).
- The first regular color television broadcasts in the world (1967).
- **BBC Microcomputer** for early computer education of many British children and adults (1980s)
- First **Digital Satellite Television** service in the world (1990)
- **First High-Definition Broadcasting**
- **BBC iPlayer**: First major catch-up TV service in the world (2007); set the standard for similar platforms.
- Leading testing and adoption of **4K and Ultra-High Definition broadcast**
- Producing immersive **VR and Immersive Content/Experiences**
- **Binaural Audio** for immersive spatial audio experiences for headphone listeners
- **BBC micro:bit** - entry-level programmable computer for children
- Low-latency dynamic adaptive streaming over HTTP
- Dynamic adaptive streaming over QUIC
- **Object-based Media** trials
- Hybrid Log Gamma (HLG) system for **High Dynamic Range** (HDR),
Object-Based Media allows the content of programmes to change according to the requirements of each individual audience member.

- Media Objects – assets that make the content
 - Audio, video, graphics, captions, 3D models, data streams, textures
 - Code: shaders

Traditional linear broadcast

Media objects assembly in production

Same assembly broadcast to everyone

Interactive Object-based Weather Forecast

Media objects assembly at point of consumption based on user preferences and interaction
Future Personalised Object-Based Media Experiences Delivered at Scale Anywhere

Stream 2: Object Capture and Representation
- Audio/Video
- Objects + Scene Metadata

Stream 3: Object-Based Production
- Objects + Production Metadata

Stream 4: Compute-Aware Network Delivery

Intelligent Personalised Media Delivery at Scale
- AI-powered technologies to deliver personalised media content cost-effectively and efficiently to mass audiences
- Technologies for distributed execution and intelligent placement of media applications and rendering services
AI4ME Service Resources

• Streaming AI4ME OBM to many users requires a combination of hardware and software resources to ensure a smooth and high-quality streaming experience

• The key types of software resources that are used for a service, include:
 • Content Servers (Cloud Containers): for OBM processing, generating additional content (titles, AR) and steaming
 • Content Storage: High-capacity storage to store UHD OBM video files – over a distributed file system
 • Content Management System (CMS): A CMS to organise and manage OBM content, including metadata, thumbnails, and access controls
 • CDN Components: Schedulers, load balancers, cataloguers, caching nodes
 • GPU/CPU Resources: Rendering engine and transcoding
 • Memory: Significant RAM is necessary to buffer and process video streams efficiently, at scale
 • CDN Components: Schedulers, load balancers, caching nodes

• The computational and network optimisation challenges are legion.
AI4ME High-level Network Architecture

- As jobs are requested, the computational demands are also identified, and users are assigned to AIM4ME service instances
- Cloud orchestrator will direct traffic to an available Service Instance, optimising OBM content delivery and reducing user latency
• **Investigating two AI Use Cases**
 • Combining Cloud Infrastructure Orchestration and Network Optimisation for AI4ME Services
 • AI4ME Service and Network Fault Detection, Prediction and Resolution
• **However, AI Challenges for solving complex network problems include:**
 • Data scarcity and quality. AI algorithms require large amounts of high-quality data to train effectively
 • Network data can be scarce, especially for complex networks with many nodes and edges
 • Developing AI models that can learn from sparse and noisy network data
 • Using AI models that are interpretable and explainable
 • Can we explain why they have made a particular prediction about network performance?
 • Developing AI models that are computationally efficient and scalable
 • The AI models would need to run in real time on the large complex AI4ME infrastructure
 • Developing AI models that are secure and privacy-preserving.
 • Identifying AI models that can be trained on sensitive network data without revealing any confidential information of AI4ME users
Questions/Discussion

Rajiv Ramdhany (BBC) - Rajiv.Ramdhany@bbc.co.uk
Nick Race (Lancaster University) - n.race@lancaster.ac.uk
Daniel King (Lancaster University) – d.king@lancaster.ac.uk

Tomorrow (Nov 10, 2023) Rajiv will present a more detailed overview of AI4ME network challenges in the IETF CATS WG.

ai4me.surrey.ac.uk