Constrained Application Protocol (CoAP) Performance Measurement Option

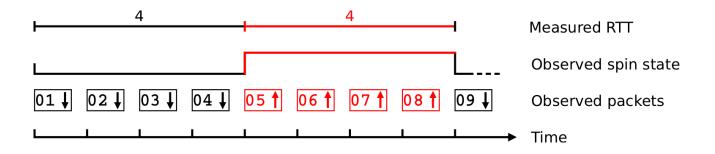
draft-ietf-core-coap-pm-01

Prague, Nov 2023, IETF 118

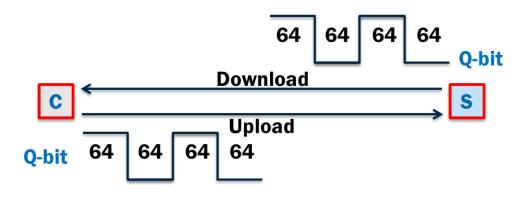
Giuseppe Fioccola (Huawei) Tianran Zhou (Huawei) Massimo Nilo (Telecom Italia) Fabrizio Milan (Telecom Italia) Fabio Bulgarella (Telecom Italia)

Motivation

A mechanism to measure the performance in CoAP can be useful to verify and meet the operational requirements.

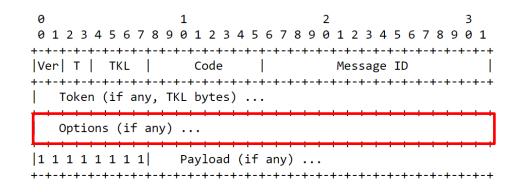

- It is resource consuming to read IDs / sequence numbers and store timestamps for constrained nodes.
- Performance Measurement in constrained environment needs straightforward methodologies!
- ✓ It must be a simple mechanism for network diagnostic requiring just a minimal amount of collaboration from the endpoints.

Explicit Flow Measurement (EFM) techniques employ few marking bits, inside the header of each packet, for loss and delay measurement.


• They are described in RFC 9506 (just published!)

Spin Bit and sQuare Bit

The Spin bit idea is to create a square wave signal on the data flow, using a bit, whose length is equal to RTT. It is optional in QUIC (<u>RFC 9000</u> and <u>RFC 9312</u>)



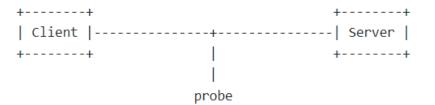
The sQuare bit creates square waves of a known length as defined in the Alternate Marking (<u>RFC 9341</u>). This can be used for packet loss (and delay) measurements.

COAP PM Option

• A new option for CoAP carrying PM bits (Spin bit and sQuare Bit) can be introduced

- The PM Option Value can be defined with the following bits:
 - sQuare Bit (Q) for Packet Loss measurement in both directions.
 - Spin Bit (S) for RTT measurement.
 - Combined sQuare Bit (C) can reinforce Q with Delay information.
 - The Event bits can be used to communicate loss and delay events.

New patterns may be added based on the methods in RFC 9506

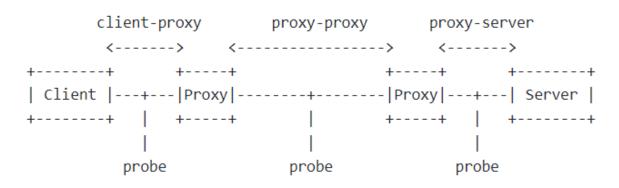

Application Scenarios (1/2)

Non-proxying endpoints

The CoAP PM Option can be applied end-to-end between client and server and, since it is Elective, it can be ignored by an endpoint that does not understand it.

Measurements:

- e2e (Client-Server)
- on-path upstream and downstream (Probe)
- on-path intra-domain portion (with more Probes)



Collaborating proxies

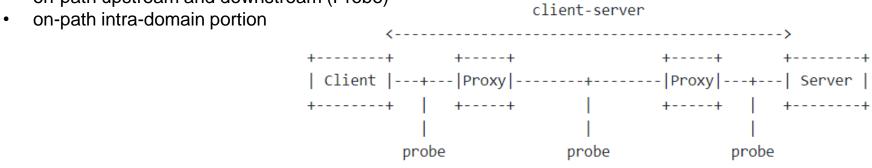
The CoAP PM Option can be applied end-to-end between client and server (or between collaborating Proxies).

Measurements in case of collaborating proxies:

- between Client-Server, Proxy-Proxy, Proxy-Server
- on-path upstream and downstream (Probe and/or Proxy)
- on-path intra-domain portion

Application Scenarios (2/2)

Non-collaborating proxies


The PM Option is Proxy Unsafe and is unsafe for forwarding by a proxy that does not understand it.

If there are non-collaborating and caching proxies, the measurements would not be possible.

An implementation MAY consider the PM Option as Safe-to-Forward if the proxies are non-caching

Measurements in case of non-collaborating and non-caching proxies:

- e2e (Client-Server) ٠
- on-path upstream and downstream (Probe) ٠

DTLS \triangleright

When a client uses a collaborating proxy the separated sessions are secured using DTLS but can still be measured. An on-path probe cannot perform the measurements in any case.

OSCORE \geq

If an OSCORE endpoint sends both outer and inner option, the inner is for measuring the connection to the end-to-end peer, and the outer can be used for measuring the connection to next proxy.

Next Steps

- This draft is based on well-known methodologies applied in RFC9000 (SpinBit) and RFC9341 (sQuare Bit).
- RFC9506 on EFM has just been published

Welcome questions, comments

Thank you