
The R5N Distributed Hash Table
I-D: https://datatracker.ietf.org/doc/draft-schanzen-r5n/

IETF118

Martin Schanzenbach ♠, Christian Grothoff ♣, Bernd Fix ♦
06/11/2023

♠ Fraunhofer AISEC https://aisec.fraunhofer.de

♣ Berner Fachhochschule https://bfh.ch

♦ GNUnet e.V. https://gnunet.org

https://datatracker.ietf.org/doc/draft-schanzen-r5n/
https://aisec.fraunhofer.de
https://bfh.ch
https://gnunet.org


R5N: Randomized-recursive routing for restricted-route networks

R5N is a DHT with the following design goals:

• Open participation peer-to-peer routing.

• Works in restricted-route environments.

• Supports route path recording.

• In-band request (and response) validation.

• Allows for result filtering.

1



Open participation peer-to-peer routing

• Access control requires authentication (and trust) and leads to centralization.

• RELOAD (RFC 6940): “RELOAD’s security model is based on each node having

one or more public key certificates. In general, these certificates will be assigned

by a central server, which also assigns Node-IDs, although self-signed certificates

can be used in closed networks.”

• (Popular) DHTs today require classic Kademlia-style ad-hoc permissionless

participation (e.g. IPFS).

2



Support for restricted-route environments

From “R5N : Randomized Recursive Routing for Restricted-Route Networks” by Evans

et al.:

• Restricted-route topology refers to a connected underlay topology which does not

support direct connections between some of the nodes (e.g. wireless mesh

networks, NAT or firewalls).

• Common DHT routing algorithms (e.g. Kademlia) show diminished performance

or even arrant failure when operating over a restricted-route underlay.

• A common solution is to prevent participation in the DHT to peers that are not

encumbered by such restrictions.

• However, on the modern Internet the proportion of hosts with unrestricted

communication capabilities is increasingly limited (e.g. CG NAT).

3



Implications of restricted-route environments

Problem:

• Some peers, which from the distance metric (XOR) may be close, may not be

reachable (e.g. firewall).

• This leads to multiple (local) minima with respect to where data may be

stored/can be retrieved.

Solution:

• Random walk before greedy decent to “escape” local minima.

• Assuming we have a small world topology, the random walk will cause us to land

at a random peer in the network from where the greedy descent will find a

random local minimum.

• Replication at multiple local minima combined with the birthday paradox provides

reasonable availability.
4



Kademlia sunshine scenario (k=2)

0000

0111

0001
1101

1100

0101

1001

1111

5



Restricted route scenario

0000

0111

0001
1101

1100

0101

1001

1111

6



Local minima I

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

Local minimum for
"01*"

Local minimum for
"01*"

7



Local minima II

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

Local minimum for
"01*"

Local minimum for
"01*"

8



PUT example — XOR

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

"PUT  value under
key: 0011" 

9



PUT example — R5N walk length = 1

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

"PUT  value under
key: 0011" 

10



PUT example — R5N walk length = 1

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

"PUT  value under
key: 0011" 

11



Special case: At least one descent-hop; no loops

0000

0111

0001
1101

1100

0101

1001

1111

Local minimum for
"00*"

Local minimum 
for "00*"

Local minimum for
"110*"

Local minimum for
"110*"

"PUT  value under
key: 0011" 

12



Route recording for source routing

Consider the following problem:

• Two peers want to use a communication channel.

• They cannot establish a direct link due to underlay restrictions.

• Assumption: Other peers are happy to provide relay services.

• Payload transmission via PUT and GET would be inefficient.

⇒ Discover a route through the overlay:

• Peer adverstises existence of service via DHT PUT with route recording.

• Client discovers service provider via DHT GET with valid route of GET/PUT

message path.

13



In-band response validation

DHT values can be corrupted or invalid. R5N addresses this with pluggable, extensible

block types:

• Given a key and a block type, it is possible to verify the integrity of the value.

• The verification should be possible for all hops on path, improving caching

performance.

• A verification could include cryptographic signatures over the data or more

sophisticated approaches (see GNS, RFC-to-be 9498)

14



Result filtering via mutated Bloom filter

Queries could have a unique or multiple results depending on the application.

• We provide capability to abort query forwarding early if unique answer has been

found.

• We probalistically filter results already known to the client to reduce traffic.

• To address false positives when using Bloom filters we use mutation.

15



Optimization: Routing loop prevention

Repeatedly visiting the same peer in GET or PUT operations is inefficient.

• Visiting new peers increases the chance of finding previously undiscovered results.

• Visiting new peers drives us away from the starting point and towards more

distant local minima.

R5N uses a Bloom filter in GET/PUT messages to prevent routing loops.

16



For DISPATCH

• I-D is WIP at https://datatracker.ietf.org/doc/draft-schanzen-r5n/

• We have approached WGs since initial upload: dinrg, rtgwg, . . .

• Which (other) WGs may be interested?

17

https://datatracker.ietf.org/doc/draft-schanzen-r5n/


Funded by

Contacts:

Martin Schanzenbach schanzen@gnunet.org

Christian Grothoff grothoff@gnunet.org

18


