Compact Denial of Existence in DNSSEC

Shumon Huque, Christian Elmerot, Ólafur Guðmundsson November 10th 2023 DNS Operations Working Group Internet Engineering Task Force (IETF) 118 Meeting Prague, Czechia

Current version: 01

- Versioned draft:
 - <u>https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-compact-denial-of-existence-01</u>
- Datatracker link:
 - <u>https://datatracker.ietf.org/doc/draft-ietf-dnsop-compact-denial-of-existence/</u>

Implementation Status section

• Note Cloudflare's deployment of NXNAME using private RR type 65283

NS1 will switch to NXNAME sentinel type soon

[dns-operations@dns-oarc.net] Subject: NS1 changing compact NSEC for NXNAME From: Jan Včelák jv at fcelda.cz Tue Nov 7 23:05:41 UTC 2023

NS1 is going to deploy a change to the Compact Denial of Existence in DNSSEC which modifies the signaling for empty non-terminals and non-existent names in the NSEC bit map.

Currently, we include TYPE65281 in the NSEC bit map for empty non-terminals. We are going to remove that bit and instead set TYPE65283 in the NSEC bit map for non-existent names.

[...]

Only specify NXNAME type

- Consensus is to only specify the NXNAME type.
- The ENT type will be retired, and mentioned for historical reasons.
- Only one opposing view (keep ENT, or only specify ENT)
 - Only ENT does not allow us to distinguish NXDOMAIN across different implementations of online signing.

Section 3.4 - Explicit queries for NXNAME

- Although nothing should be explicitly querying this pseudo RR type, we clarify what the response should be if such queries are received.
- Treat as normal query type: 2 cases:
 - Query at name that exists (including at an Empty Non Terminal):
 - Standard NODATA response, enumerating types that exist in the NSEC bitmap
 - Query at name that does not exist:
 - NODATA response with NXNAME deliberately excluded from the NSEC bitmaps.
 - Reason: including NXNAME in the type bitmap when the query type itself is NXNAME, may cause resolvers to SERVFAIL & retry - the response's NSEC record claimed data of type NXNAME existed at the name, yet the Answer section is empty.
 - But loss of NXDOMAIN signal
- Treat as meta-type & return error (but type space ambiguity; private space?)

RCODE 3 restoration: DO=0 queries

• Authoritative Servers

- Could just supply a normal NXDOMAIN response.
- Is it worth it though, since most modern resolver always send DO=1 queries?
- And DNSSEC aware resolvers are required to send DO=1:
 - From RFC 3225, Section 3: "A recursive DNSSEC-aware server MUST set the DO bit on recursive requests, regardless of the status of the DO bit on the initiating resolver request."
- Iterative Resolvers/Forwarders etc
 - Recognize the NXNAME signal and restore NXDOMAIN in the RCODE field of responses it sends back to DO=0 clients. (Draft already mentions this.)
 - Additional cache management measures may be needed (tagging NXNAME enhanced responses for differential treatment to downstream queriers).

Signaled RCODE 3 Restoration for DO=1 queries

- Define new "Compact Answers OK" EDNS header flag ("CO")
- If a DO=1 querier also sets CO=1, then a Compact Denial cognizant DNS server can send the NXNAME enhanced NODATA response, and additionally set RCODE=NXDOMAIN (3)
 - For an authority server this is straightforward.
 - For an iterative resolver, they would have to examine the NXNAME signal in cached data, and then:
 - if downstream querier sets Compact Answers OK, return signed NODATA with RCODE=3
 - if downstream querier does not set it, returned signed NODATA with RCODE=0 (NOERROR) - basically the same answer as today without signaling.

5.1. Signaled Response Code Restoration

This section describes an optional but recommended scheme to permit signaled restoration of the NXDOMAIN RCODE for DNSSEC enabled responses. A new EDNSO [RFC6891] header flag is defined in the 2nd most significant bit of the Z field in the EDNSO OPT header. This flag is referred to as the "Compact Answers OK (CO)" flag.

When this flag is sent in a query by a resolver, it indicates that the resolver will accept a signed NXNAME enhanced NODATA response for a non-existent name together with the response code field set to NXDOMAIN (3).

In responses to such queries, a Compact Denial authoritative implementing this signaling scheme, will set the Compact Answers OK EDNS header flag, and for non-existent names will additionally set the response code field to NXDOMAIN.

Repeat question: Applicability Statement?

- This spec standardizes a deployed existing practice.
- For new online signing implementers, should this spec advise them to only consider this mechanism if they have the specific requirements that necessitate it?
- And otherwise, recommend RFC4470 (White Lies/Minimally covering NSEC)? If so, they can avoid all the issues associated with missing or alternate NXDOMAIN signals.