Secure Remote Drone ID: Implementation Updates

7th November 2023
IETF 118

Andrei Gurтов and TDDE21 students
State of the art

- **DRIP (Drone Remote ID Protocol)**: Enhancing drone accountability and safety through unique identification.

- **Hierarchical Host Identity Tag (HHIT)**:
 - DET (DRIP Entity Tag): Uniquely identifies drones using a format based on IPv6, ensuring global uniqueness and ease of management.

- **Trustable identifiers**: Digital signatures from Assigning Authorities provide security and authenticity.

- **DNS as registry**: Decentralized method of managing drones identities, DNS servers in each country.
Changes from current HHIT to new according to RFC 9374

Old implementation (ORCHIDv2) for HIT only:
- 32 bits are used for the IPv6 prefix
- The OGA id / HHSI is 4 bits.
- The HI hash is the remaining 92 bits
- draft-moskowitz-hip-hierarchica-lhit-05

In RFC 9374, the new ORCHID has the following format, and can be used for both HIT and HHIT:
- 28 bits for IPv6 prefix.
- The HID is 28 bits (for HHIT) or 0 bits (for HIT).
- The OGA id / HHSI is 8 bits (for HHIT) or 4 bits (for HIT).
- The HI hash is the remaining 64 bits (for HHIT) or 96 bits (for HIT) are used for the

Implementing the change in OpenHIP
Current Status – RFC9374 and more

- Previous year implemented everything in draft-ietf-drip-rid-32
- Only cosmetic changes to the latest version (RFC9374)

- Made latest way of generating HHITs compatible with previous code
- Converting an HHIT to a .xml file which is used by the transmitter (drone)
- Started making Android app compatible with transmitter code
 - Updated our web page https://www.ida.liu.se/~andgu38/drip/
Observer application

- OpendroneID as a base
- Custom backend DB/blockchain
 - Going to DNS
- Now published as Google Play App with OpenstreetMaps
 - A few tens of downloads
 - iPhone next?
Main challenges so far - Authentication

- Last year implemented auth-17, upgrading to auth-31
- Follow the ASTM standard to prototype the different message types
- Understand the authentication draft and the interaction between the components
- Some message types are not fully specified
- Other messages include information that we don’t know how to access
Adapted IETF drafts and recommendations: Utilized drafts and the IETF mailing list to figure out how integration between DNS and certificates works.

Local server setup for DNS using standard PC hardware: Used Local DNS server in testing and proof of concept phase.

Version Control and Documentation: Used Git to manage code changes and maintain documentation for the group and also for future projects.
Current status - DNS and certificates

- Trying implementing registries-13
- Local DNS with BIND9: Configured and operational, supporting drone-specific DNS queries.
- Drone management: Successful tests of registration and retrieval of Drone data on the DNS.
- Integration testing: Tested compatibility and operation between DNS services and certificate management.
- DNSSEC?
Main challenges so far - DNS and certificates

- **Transitioning from TXT to unassigned DNS type (TYPE66):** Aligning with industry standards and best practices as per IETF mailing list recommendations.
- **Integration with existing systems:** Ensuring compatibility and seamless operation with backend and app from last year’s project.
- **Testing and Quality Assurance:** So far the tests are limited in scope, so we are not sure if it is scalable.
- **TODO:** Integration with Android APP
OpenHIP Updates: C2 draft

• Changes since latest OpenHIP stable branch and latest
 ○ Porting of OpenSSL from v 1.1.1 to v 3.0.X
 ○ API for CORE functions (Emulator CORE v7.5 -> v9 porting)
 ○ Default libraries in Ubuntu

• What did work.
 ○ HIPv2 initialization
 ○ Communication path discovery.

• Issues
 ○ No IPsec communication after link establishment.
 ○ Debugging, documentation and automated test development
 ○ https://bitbucket.org/openhip/openhip/src/master/

• New HIPv2 implementation in Python
 ○ https://www.linuxjournal.com/users/dmitriy-kuptsov
Thanks!