Secure Remote Drone ID: Implementation Updates

7th November 2023

IETF 118

Andrei Gurtov and TDDE21 students

State of the art

- **DRIP (Drone Remote ID Protocol):** Enhancing drone accountability and safety through unique identification.
- Hierarchical Host Identity Tag (HHIT):
 - DET (DRIP Entity Tag): Uniquely identifies drones using a format based on IPv6, ensuring global uniqueness and ease of management.
- **Trustable identifiers:** Digital signatures from Assigning Authorities provide security and authenticity.
- **DNS as registry:** Decentralized method of managing drones identities, DNS servers in each country.

Changes from current HHIT to new according to RFC 9374

Old implementation (ORCHIDv2) for HIT only:

- 32 bits are used for the IPv6 prefix
- The OGA id / HHSI is 4 bits.
- The HI hash is the remaining 92 bits
- draft-moskowitz-hip-hierarchical-hit-05

In RFC 9374, the new ORCHID has the following format, and can be used for both HIT and HHIT:

- 28 bits for IPv6 prefix.
- The HID is 28 bits (for HHIT) or 0 bits (for HIT)
- The OGA id / HHSI is 8 bits (for HHIT) or 4 bits (for HIT)
- The HI hash is the remaining 64 bits (for HHIT) or 96 bits (for HIT) are used for the

Implementing the change in OpenHIP

Current Status – RFC9374 and more

- Previous year implemented everything in draft-ietf-drip-rid-32
- Only cosmetic changes to the latest version (RFC9374)

- Made latest way of generating HHITs compatible with previous code
- Converting an HHIT to a .xml file which is used by the transmitter (drone)
- Started making Android app compatible with transmitter code
- Updated our web page <u>https://www.ida.liu.se/~andgu38/drip/</u>
- https://gitlab.liu.se/hamro777/tdde21-drip-2022.git

Observer application

- OpendroneID as a base
- Custom backend DB/blockchain
 - Going to DNS
- Now published as Google Play App with OpenstreetMaps
 - A few tens of downloads
 - <u>https://play.google.com/store</u> /apps/details?id=org.securedr oneid.android
 - \circ iPhone next?

12:55 🗢 📽	🖬 🕈 🕾 .il 38% 🚔	1 drones
O drones	LEAR CLEAR C	1 drones
Store Algeren	Systems Systems Antarktiska oceanen	Google
	0 <	200100250b3 dd5b0

12:59 🔁 🖬 📓 🖗 🗣 all 38	% 💩		
Connection 2021-11-01 12:59:52 83 Rssi -62 dBm, BT4 Mac DC:A6:32:16:DB:E Started 00:39:3g0 Last seen: 00:00: ag0 Mag Δ 101 ms pistance ~93653 m			
Basic ID Type Helicopter_or_Multirotor ID Type DRIP_ ussio 200100250b3fa14c1cee522e25add5b0 Validated Invalid	0 D		
COPY ID TO CLIPBOARD			
Location Latitude 59.0591410 Attivute Press, Unknown Direction 0 deg Status Ground Hon. Speed 0.00 m/s Height Orknown Hen Winknown Hen Accuracy Unknown Time Acc. Unknown Time Acc. Unknown	0		
Self ID Operation Type 0	0		
System/Operator Lanade Unknown Loadon Invalid Cassification Undeclared Cassification Undeclared Area Coalin Undeclared Area Coalin Undeclared Area Coalin Undeclared Area Coalin Undeclared	0		
Operator ID Operator ID Type 0	0		
Authentication Type UAS_ID_Signature Length 84 bytes Timestamp 2021-11-01 12:56:19.0			
MANUAL PUBLIC KEY ENTRY			
III O <			

Main challenges so far - Authentication

- Last year implemented auth-17, upgrading to auth-31
- Follow the ASTM standard to prototype the different message types
- Understand the authentication draft and the interaction between the components
- Some message types are not fully specified
- Other messages include information that we don't know how to access

Development strategy - DNS and certificates

- Adapted IETF drafts and recommendations: Utilized drafts and the IETF mailing list to figure out how integration between DNS and certificates works.
- Local server setup for DNS using standard PC hardware: Used Local DNS server in testing and proof of concept phase.
- Version Control and Documentation: Used Git to manage code changes and maintain documentation for the group and also for future projects.

Current status - DNS and certificates

- Trying implementing registries-13
- Local DNS with BIND9: Configured and operational, supporting drone-specific DNS queries.
- **Drone management:** Successful tests of registration and retrieval of Drone data on the DNS.
- **Certificate management:** Established process for generating the digital certificates needed.
- **Integration testing:** Tested compatibility and operation between DNS services and certificate management.
- DNSSEC?

Main challenges so far - DNS and certificates

- **Transitioning from TXT to unassigned DNS type (TYPE66):** Aligning with industry standards and best practices as per IETF mailing list recommendations.
- **Integration with existing systems:** Ensuring compatibility and seamless operation with backend and app from last year's project.
- **Testing and Quality Assurance:** So far the tests are limited in scope, so we are not sure if it is scalable.
- TODO: Integration with Android APP

OpenHIP Updates: C2 draft

- Changes since latest OpenHIP stable branch and latest
 - Porting of OpenSSL from v 1.1.1 to v 3.0.X
 - API for CORE functions (Emulator CORE v7.5 -> v9 porting)
 - Default libraries in Ubuntu
- What did work.
 - HIPv2 initialization
 - Communication path discovery.
- Issues
 - No IPsec communication after link establishment.
 - Debugging, documentation and automated test development
 - <u>https://bitbucket.org/openhip/openhip/src/master/</u>
- New HIPv2 implementation in Python
 - <u>https://www.linuxjournal.com/users/dmitriy-kuptsov</u>

Thanks!

