Lightweight Bundle Protocol
Edge Node with Zero-Configuration and Zero-State

IETF 118 DTN WG

Brian Sipos, Sarah Heiner
JHU/APL
Background

- Existing BPA and CLA implementations rely on externally-supplied configuration for - at least - bootstrapping into a BP network
- Configuration represents a burden to network admins
 - It must be maintained and distributed; there is currently no standard form
 - It must be re-distributed when it changes
- Configuration represents a burden to edge node users
 - It must be obtained and translated into the form my BPA needs
 - It must be synchronized when it changes
- Burden translates into a barrier to entry
 - For an edge node with a single application with one (or a few) endpoint(s) on a non-challenged IP network
 - Even a perceived barrier will stop potential users from trying things out
 - Hinders developers of X-over-BP applications when they need to prototype, experiment, and/or test interoperations
Use Case and Goals

“I already have IP LAN connectivity, I just want to get on this BP network!”

✓ No inventing new protocols or tools
✓ No need for general-case CLA discovery
✓ No need for router—router discovery
✓ No need for complex multi-application nodes

These separate mechanisms already exist
Existing Mechanisms and New Behavior

• Zero-Configuration CLA Discovery
 - Existing protocols and tools for **DNS-Based Service Discovery** (DNS-SD)
 ▪ Can use multicast DNS (mDNS) or traditional unicast DNS
 - Existing **TCP/IP service parameters** in SRV resource record (RR)
 - Existing **IANA service name** “dtn-bundle” for the TCPCL
 - Existing **PKIX certificate profile** to authenticate and authorize a node

• New behavior at a higher-level is for a router to offer and edge node to enumerate/use the TCPCL service

• Zero-State BP Agent
 - Existing logic of what are the necessary functions of a BPA
 - Existing uses of TCPCL for both receiving and sending bundles

• New behavior to narrow to a single-application case which allows zero-state operation
 - This is not necessarily limiting to a single endpoint - just single app

![Figure 5: Zero-State BPA Flows](image)
Current State of the Draft

• First revision of a personal draft had editorial feedback

• Second revision of a personal draft: https://www.ietf.org/archive/id/draft-sipos-dtn-edge-zeroconf-01.html

• These mechanisms are not intended to:
 - Be a general purpose BP neighbor discovery
 - Share information about other CLAs on the same node or other peer connectivity
 - Discover other domain's BP routers; just local BP gateway router
 - Operate on the interior of a BP network; just the edge
 - Operate over non-IP networks or non-TCP CL

• These mechanisms can be augmented to relax assumptions
 - Discussed in Section 5
Next Steps

• Document feedback welcome

• Implementation feedback
 - Try it out!
 - These mechanisms should be usable within existing infrastructure right now

• This could be a topic for a hackathon activity
 - Easier: Create a tool to extract DNS-SD state into configuration for ION, HDTN, DTNME, etc.
 - Less easy: Create a minimal BPA in your favorite language (a single-package Python BPA?)

• Do existing BPA implementations “behave well” when ad-hoc edge nodes connect to them via TCPCL?
 - This means routing properly between those edge nodes

• Does this document need more specific requirements on edge router behavior?