MKA over IP/UDP

Authors:
Hooman Bidgoli, Nokia
Nabeel Cocker, Redhat
Nicklous Morris, Verizon
PQC issue with current encryption protocols

- Symmetric keys, both Bob and Alice need to have the same key to encrypt and decrypt
 - Strong security
 - Key distribution can be the point of attack
- Asymmetric Keys, solves the exchange problem that plagued symmetric encryption. It does so by creating two different cryptographic keys (hence the name asymmetric encryption) — a private key and a public key
 - RSA, DSA, DH, ECDH
 - Longer Key lengths to achieve same security as symmetric keys
 - more processing overhead
IEEE 802.1AE

Post quantum safe

- MACsec Key Agreement (MKA) uses Pre-Shared Key (PSK) to encrypt the datapath symmetric key (SAK)
 - PSK is a form of Symmetric Encryption, with length of 64 Hex (AES-256) or 32 Hex (AES-128)
 - CMAC-AES-128/256 to Encrypt the SAK

- SAK is generated from Random Number Generator of the SROS
 - Deviation Function uses the RNG to generate 128 bit or 256 bit keys for datapath encryption
 - SROS RNG is (FIPS-140-2 and NIAP Certified)
 - Better then 256 bit entropy

MACsec uses the SAK and GCM-AES-128/256 to create a Post Quantum Safe Transport
IEEE 802.1AE

Enhanced

- Programmable encryption and authentication offset
- Capable of leaving L2, L2.5, L3 headers in clear
 - IEEE802.1AE MACSec standard encryption
 - WAN-MODE MACSec encryption, VLAN tags in clear
 - MPLS and services encryption, by leaving the MAC header, VLAN tags and MPLS label in clear
 - IPv4/IPv6 encryption, providing an alternative to IPSec. Leaving MAC, VLAN Tags and the IP header in clear
- Achieving encryption for multiple OSI layers via a single standard (IEEE802.1AE)
Highly secure, low latency line rate encryption
Post quantum safe encryption

Quantum Safe Encryption
- GCM-AES 256, IP/MPLS encryption
- Managed end-to-end encrypted services
- Reuses IEEE802.1AE and IEEE802.1x (MKA)

Encrypt existing services
- No need to re-engineer your network or services
- ANYsec encrypts existing tunnels with a flip of a switch
- Transparent to transit/LSR router

Encryption suited for any type of network
- Latency prune or low latency
- Encrypt at any network speed
Traffic flow

- **PE1:**
 - L0:138.120.0.1
 - NodeSID: 1000

- **PE2:**
 - L0:138.120.0.2
 - NodeSID: 1001

- **PE3:**
 - L0:138.120.1.1
 - NodeSID: 1002

Area 0 segment routing ISIS

Tunnel encryption

- Any service riding these tunnels will be encrypted
MKA over UDP/IP

Encryption key signaling via MKA

- MACSec key agreement over IP/UDP
- Configurable UDP port to extract MKA packets at destination
- MKA IP, source and destination IP address is based the configured “local-ip” and “peer-ip”