Collection of Traffic Traces on the Global NDN Testbed

Sankalpa Timilsina, Davide Pesavento, Junxiao Shi, Susmit Shannigrahi, Lotfi Benmohamed

Importance of traffic traces

Reproducible results (e.g., in simulations)

To enable apples-to-apples comparisons of different protocols and designs

To help design forwarding strategies, caching policies, etc.

Performance measurements for optimization and tuning

Network troubleshooting and debugging

Approaches to produce an NDN traffic trace

Convert from other traces that contain hierarchical names (HTTP, NFS)

- Source traces are hard to obtain, harder to publish
- Source traces can be obfuscated but must preserve the name hierarchy
- Cannot capture the full semantics of NDN
- May not represent how native NDN apps interact

Synthesize

- What parameters?
- Chicken-and-egg problem

Capture from a real/realistic NDN deployment

- Not many NDN applications
- Real users vs. synthetic users

Goals

• Dataset of traffic traces

Software toolkit

- Automated traffic capture, anonymization, and compression
- Replay the traces in ndnSIM and Mini-NDN
- Analyze the traces to extract basic metrics and trends
- Dissect the traces and take only a subset, e.g., only routing traffic
- Each piece is **modular** and can be used independently

Trace collection

ndntdump: NDN traffic dumper

- ndntdump NLSR 150N records ^{an}onymized NDN packets about packet Ethernet **UDP** transport NFD adapter WebSocket WebSocket over HTTPS loopback over HTTP nginx interface .pcapng.zst .ndjson.zst
- Live capture from network interface
 - Or read an existing trace from file
- Save in *pcap* or *pcapng* format
 - With on-the-fly gzip or zstd compression
- Best-effort anonymization features
 - Replace Content and ApplicationParameters with zeros
 - Also increases the compression efficiency
 - LSB of IPv4/IPv6/MAC address is XORed with a random key
 - More advanced anonymization techniques to be developed

Packet direction	Incoming or Outgoing
Flow key	String identifying UDP/TCP flow
Packet type	Interest, Data, Nack, or Fragment
Packet size	At NDNLPv2 layer and at network layer
Interest packet fields	Name, CanBePrefix, MustBeFresh, For-
	wardingHint, InterestLifetime, HopLimit
Data packet fields	Name, ContentType, FreshnessPeriod,
	FinalBlockId
Nack packet fields	NackReason, plus the fields from the en-
	closed Interest

Trace collection

We utilized the NDN testbed and the FABRIC testbed for data collection

- Traffic was dumped from 4 NDN routers in North America
 - > The testbed has ~30 nodes but only 16 were online at the time of the experiment in Q2 2023
- NDN applications generating additional traffic were deployed on FABRIC

The Global NDN Testbed

Trace collection

- Traffic dumpers placed on four testbed routers in North America
- End hosts (on FABRIC) running two kinds of NDN applications:
 - File transfer
 - Video streaming
- Duration: 3 hrs/day x 7 days

Published dataset

- In total, we captured 320 GiB of traffic (13 GiB compressed)
 - 108 million packets
- Full dataset available at https://github.com/tntech-ngin/ndn-traffic-traces

✤ 7 different traffic scenarios:

- A. Baseline traffic from NLSR and other testbed users
- B. File transfer only
- C. Video streaming only
- D. Both applications, one producer, one consumer
- E. Both applications, one producer, 3 consumers
- F. Both applications, 3 producers, one consumer
- G. Same as D, but end hosts are spread across multiple FABRIC sites

	Total packet count			Size	CBP	MBF
	Interests	Data	Nacks	(MiB)	(%)	(%)
Α	149,683	84,617	10,699	62	59.55	81.26
В	10,041,803	9,906,857	35,350	60,604	1.23	1.56
С	1,533,686	1,074,899	11,388	3,987	24.02	25.95
D	10,352,712	10,152,325	10,360	60,858	2.24	2.74
Е	6,353,608	5,908,883	15,645	34,487	3.87	4.81
F	14,823,353	14,535,375	6,899	87,706	1.59	1.94
G	10,330,511	13,271,744	7,015	80,548	1.59	2.18

Preliminary analysis of the traces

Name components

- All names have between 3 and 13 components
 - Most have either 4 or 6 components
- Typically 25-130 bytes
 - Some names can go up to 700 bytes

Name prefixes

- The majority of the traffic is generated by the file transfer and video streaming applications
- Smaller amounts of traffic from ndnping and NLSR

Count

Throughput and caching

- Producer: UCLA
- Consumers: WU, ARIZONA, Memphis
- UCLA received fewer Interests than cumulatively sent by consumers
 - Implies some caching/aggregation benefits

Timestamp (UTC)

Interest Lifetime and Data Freshness

- 2000 ms is the most commonly used Interest lifetime
- 97% of Data packets do not have a freshness period
 - Not shown in the plot

Hop Limit

- Three peaks at and below32, 64, and 255
 - Attributed to the default settings in various NDN implementations

Routing protocol traffic (NLSR)

Clearly shows 4 different types of NLSR packets:

- ➢ HELLO
- > PSYNC
- LSDB coordinates
- LSDB names

Caveats

- Traffic mix is probably not representative of a real NDN deployment
 - But this is the best we can provide at the moment
- Traffic anonymization is a simple XOR
 - Researchers can plug in better algorithms
- Testbed scale
 - Current dataset: 4 nodes, U.S. centric
 - Added 10 more collection points in the past month
- Only packet traces are collected
 - May be hard to reconstruct and understand the forwarder's behavior

What's next?

Potential next steps

On-demand traffic collection, filtered by name prefix

Expand data collection to more than just packet traces

- Data plane telemetry
- Control plane telemetry

Analysis of additional metrics, e.g., RTT

Real-time troubleshooting of the testbed

• "Where did my packet go?"

Better traffic anonymization techniques

How the community can help

Currently the community lacks real datasets

- Use the provided dataset and let us know what else is needed
- Use our toolkit to collect (and publish) your own NDN traces

The current dataset lacks application diversity

• Use the NDN testbed for your research / pilot deployments

Expand the testbed

• It is currently shrinking

References

- Project website with all current and future datasets: <u>https://tntech-ngin.net/datasets</u>
- Dataset: <u>https://github.com/tntech-ngin/ndn-traffic-traces</u>
- Traffic capture scripts: <u>https://github.com/tntech-ngin/ndn-traffic-capture-scripts</u>
- Plotting scripts: <u>https://github.com/tntech-ngin/ndn-traffic-plotting-scripts</u>
- Trace replay tool for ndnSIM (proof of concept): <u>https://github.com/tntech-ngin/ndn-traffic-replay-ndnSIM</u>
- NDN traffic dumper: <u>https://github.com/usnistgov/ndntdump</u>
- ACM ICN 2023 paper: <u>https://www.nist.gov/publications/capture-and-analysis-traffic-traces-wide-area-ndn-testbed</u>