Overview of Distributed Architecture for Microservices Communication (DAMC)

[draft-li-icnrg-damc]

- Xueting Li (China Telecom)
- Aijun Wang (China Telecom)
- Wei Wang (China Telecom)

IETF 118
Service Mesh Dedicated infrastructure layer for handling service-to-service communications

1: Service governance capabilities embedded in business code

2: Unify service governance capabilities to SDK implementation

3: Unifying Service Governance Capabilities to the Service Mesh

4: Istio service Mesh with centralized control plane

Challenges

1. Concentrating all traffic through proxies
2. Single point of failure risk
3. Complex Communication demanding
Motivations

Considering the above challenges, and China Telecom's 27.1% year-on-year growth in the cloud services market, we require an **innovative solution** that:

- **Adapt** to the continually growing demands of microservices communication.
- **Feature** end-to-end service telemetry capabilities
- **Provide** robust mechanisms
- **Offer** flexible scheduling capabilities
- **Support** information-centric communication
Importance of DAMC

DAMC: Distributed Architecture for Microservices Communication

--- **Purpose**: Enhance microservice communication efficiency and reliability

Content-Centric:
- prioritize content and services

Dynamic Resource Allocation:
- optimize resource allocation
- enhancing network efficiency

Decentralization:
- distribute processing and storage capabilities

Scalability and Flexibility:
- accommodate the evolving demands of the network
Components:

- **Service Gateway (SG):**
 manages and controls communication traffic.
- **Service Router (SR):**
 Optimizes routing based on Prefix and topology.
- **Service Prefix Authentication (SPA):**
 Validates Prefix usage by microservices.
- **Service Mesh Communication Scheduling Center (SCSC):**
 Assist in optimizing communication policies.

Benefits:

- **Decentralized routing decisions** via SG and SR.
- **Routing Optimization** based on SCSC.
- **Enhanced security** via Prefix authentication.
Control signaling messages of DAMC

The types and functions of control signaling messages required for communication between components:

<table>
<thead>
<tr>
<th>Type</th>
<th>Communication Entities</th>
<th>Control Signaling Message Types</th>
<th>Control Signaling Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pod/SG</td>
<td>Service Prefixes (Name Space) Announcement</td>
<td>Microservices within each Pod communicate their used Service Prefix (Namespace) to the SG.</td>
</tr>
<tr>
<td>2</td>
<td>SG/ SR</td>
<td>Service Prefixes LSA</td>
<td>SG and SR advertise the Service Prefix and topology link relationship they can reach.</td>
</tr>
<tr>
<td>3</td>
<td>SG/SPA</td>
<td>Service Prefixes Authentication</td>
<td>The SG authenticates to the SPA requested by the Pod is legal.</td>
</tr>
<tr>
<td>4</td>
<td>SG/SR and SCSC</td>
<td>Service QoS Telemetry/Service QoS Policy</td>
<td>Communication quality reporting policies between microservices.</td>
</tr>
</tbody>
</table>
Control and forwarding processes in DAMC

1- Service Prefix Announcement
- Microservices notify their unique service prefixes to connected Service Gateways (SG).

2- Service Prefix Authentication
- SG (e.g., SG-1) verifies service prefixes through Service Prefix LSA.

Control plane

Initiating Communication
- Service A sends a communication request to Service B.
- SG-A processes communication request from Service A.

3- Topology Announcement
- SG (e.g., SG-1) uses SPA signaling to communicate with Service Routers (SR).

4- Network-Wide Notification
- Other microservices and SGs adopt similar processes for notification.

Communicating through Service Gateways
- SG-A performs service prefix authentication on it and distributes it to SR after passing it
- SR forwards the request data packet based on forwarding information base.

5- Link State Database (LSDB) and Routing
- SG interacts with SR to generate LSDB with received Service Prefix LSAs.
- FIB guide traffic forwarding and routing for optimal path selection.

Final Destination
- SR routes the request data packet to the destination microservice SG-B.
- SG-B processes the request and directs it to the service B.
Comparison between DAMC and Istio service mesh

<table>
<thead>
<tr>
<th></th>
<th>DAMC</th>
<th>Istio Service Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Microservice Communication Solution Supporting Information-Centric Network</td>
<td>Standalone Service Mesh (Open Source Project)</td>
</tr>
<tr>
<td>Communication Architecture</td>
<td>Highly Distributed</td>
<td>Highly Distributed</td>
</tr>
<tr>
<td>Traffic Management</td>
<td>Managed through Service Gateways and Service Routers</td>
<td>Managed through Envoy Proxy</td>
</tr>
<tr>
<td>Routing Decisions</td>
<td>Optimized through Service Routers</td>
<td>Supports various routing policies, Configurable</td>
</tr>
<tr>
<td>End-to-End Service Assurance</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prefix Authentication (SPA)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Management and Configuration</td>
<td>Highly Configurable</td>
<td>Configurable</td>
</tr>
<tr>
<td>Deployment and Maintenance</td>
<td>Customized, Requires Development Work</td>
<td>Open Source, Community Supported</td>
</tr>
<tr>
<td>Scalability</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>ICN supported</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Automatic Sensing and Adjustment</td>
<td>Yes</td>
<td>Partially Supported</td>
</tr>
</tbody>
</table>
Development considerations for DAMC

China Telecom plans to investigate the current implementations and challenges of Service Mesh.

Investigate (Present-Ongoing):

Architecture Refinement (Ongoing):
China Telecom plans to
refine the architecture of Distributed Service Mesh.

China Telecom plans to allocate resources to
invest in research and development.

Research and Development (Ongoing - Near Future):

Initial Cooperation (Near Future):
China Telecom plans to cooperate with leaders in the field of Service Mesh.

The ultimate goal is to facilitate the deployment of DAMC.

Deployment and User Benefits (Future - Ongoing):
DAMC References

- **RFC 8793**: Information-Centric Networking (ICN): Content-Centric Networking (CCNx) and Named Data Networking (NDN) Terminology
- **ICN**: A survey of information-centric networking
- **Microservices**: Microservices: yesterday, today, and tomorrow
- **ServiceMesh**: Service mesh: Challenges, state of the art, and future research opportunities
- **microservice**: Guiding architectural decision making on service mesh based microservice architectures
- **SOA**: "Implementation Issues and Challenges of Service Oriented Architecture", https://eprints.bournemouth.ac.uk/14267/1/Masters_Dissertation_SOA.pdf
- **Istio**: Impact of etcd deployment on kubernetes, istio, and application performance
- **NDN**: Named Data Networking

Comments

lixt2@chinatelecom.cn
wangaj3@chinatelecom.cn
wangw36@chinatelecom.cn
Thank you!