



### **Overview of Distributed Architecture for Microservices**

# **Communication (DAMC)**

[draft-li-icnrg-damc]

- Xueting Li (China Telecom)
- Aijun Wang (China Telecom)
  - Wei Wang (China Telecom) IETF 118

# **Service Mesh Concepts & Challenges**



**Service Mesh:** Dedicated infrastructure layer for handling service-to-service communications



4: Istio service Mesh with centralized control plane

# **Motivations**



Considering the above challenges, and China Telecom's 27.1% year-on-year growth in the cloud services market, we require an **innovative solution** that:

- Adapt to the continually growing demands of microservices communication.
- Feature end-to-end service telemetry capabilities
- Provide robust mechanisms
- Offer flexible scheduling capabilities
- Support information-centric communication

### **Importance of DAMC**



### DAMC: Distributed Architecture for Microservices Communication --Purpose: Enhance microservice communication efficiency and reliability

### **Content-Centric:**

 prioritize content and services

### **Decentralization:**

 distribute processing and storage capabilities

#### **Dynamic Resource Allocation:**

- optimize resource allocation
- enhancing network efficiency

### Scalability and Flexibility:

 accommodate the evolving demands of the network

### **Distributed Architecture for Microservice Communication**

### Components:

• Service Gateway (SG):

manages and controls communication traffic.

• Service Router (SR):

Optimizes routing based on Prefix and topology.

- Service Prefix Authentication (SPA):
  Validates Prefix usage by microservices.
- Service Mesh Communication Scheduling Center (SCSC):

Assist in optimizing communication policies.

### Benefits:

- Decentralized routing decisions via SG and SR.
- Routing Optimization based on SCSC.
- Enhanced security via Prefix authentication.







The types and functions of control signaling messages required for communication between components:

| Туре | Communication<br>Entities | Control Signaling<br>Message Types            | <b>Control Signaling Function</b>                                                                |
|------|---------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1    | Pod/SG                    | Service Prefixes (Name Space)<br>Announcement | Microservices within each Pod<br>communicate their used Service<br>Prefix (Namespace) to the SG. |
| 2    | SG/ SR                    | Service Prefixes LSA                          | SG and SR advertise the Service<br>Prefix and topology link<br>relationship they can reach.      |
| 3    | SG/SPA                    | Service Prefixes Authentication               | The SG authenticates to the SPA requested by the Pod is legal.                                   |
| 4    | SG /SR and SCSC           | Service QoS Telemetry/Service QoS<br>Policy   | Communication quality reporting policies between microservices.                                  |

# **Control and forwarding processes in DAMC**



#### 1- Service Prefix Announcement

• Microservices notify their unique service prefixes to connected Service Gateways (SG).

# 2- Service Prefix Authentication

• SG (e.g., SG-1) verifies service prefixes through Service Prefix LSA.

Control plane

### Forwarding plane

Initiating Communication

- Service A sends a communication request to Service B.
- SG-A processes communication request from Service A.

#### 3- Topology Announcement

• SG (e.g., SG-1) uses SPA signaling to communicate with Service Routers (SR).

#### 4- Network-Wide Notification

• Other microservices and SGs adopt similar processes for notification.

#### Communicating through Service Gateways

- SG-A performs service prefix authentication on it and distributes it to SR after passing it
- SR forwards the request data packet based on forwarding information base.

#### 5- Link State Database (LSDB) and Routing

- SG interacts with SR to generate LSDB with received Service Prefix LSAs.
- FIB guide traffic forwarding and routing for optimal path selection.

#### Final Destination

- SR routes the request data packet to the destination microservice SG-B.
- SG-B processes the request and directs it to the service B.

### **Comparison between DAMC and Istio service mesh**



|                                     | DAMC                                                                               | Istio Service Mesh                                 |
|-------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|
| Туре                                | Microservice Communication<br>Solution Supporting Information-<br>Centeric Network | Standalone Service Mesh (Open<br>Source Project)   |
| Communication Architecture          | Highly Distributed                                                                 | Highly Distributed                                 |
| Traffic Management                  | Managed through Service<br>Gateways and Service Routers                            | Managed through Envoy Proxy                        |
| Routing Decisions                   | Optimized through Service<br>Routers                                               | Supports various routing policies,<br>Configurable |
| End-to-End Service<br>Assurance     | Yes                                                                                | Yes                                                |
| Prefix Authentication (SPA)         | Yes                                                                                | Νο                                                 |
| Management and<br>Configuration     | Highly Configurable                                                                | Configurable                                       |
| Deployment and<br>Maintenance       | Customized, Requires<br>Development Work                                           | Open Source, Community<br>Supported                |
| Scalability                         | High                                                                               | Moderate                                           |
| ICN supported                       | Yes                                                                                | Νο                                                 |
| Automatic Sensing and<br>Adjustment | Yes                                                                                | Partially Supported                                |





## **DAMC References**

- RFC 8793: Information-Centric Networking (ICN): Content-Centric Networking (CCNx) and Named Data Networking (NDN) Terminology
- ICN: A survey of information-centric networking
- Microservices: Microservices: yesterday, today, and tomorrow
- ServiceMesh: Service mesh: Challenges, state of the art, and future research opportunities
- microservice: Guiding architectural decision making on service mesh based microservice architectures
- SOA: "Implementation Issues and Challenges of Service Oriented Architecture", https://eprints.bournemouth.ac.uk/14267/1/Masters\_Dissertation\_SOA.pdf
- Istio: Impact of etcd deployment on kubernetes, istio, and application performance
- NDN: Named Data Networking



<u>lixt2@chinatelecom.cn</u> <u>wangaj3@chinatelecom.cn</u> <u>wangw36@chinatelecom.cn</u>





# Thank you!