File-Like ICN Collections (FLIC)

draft-irtf-icnrg-flic-05
IETF 118, Prague

Marc Mosko

SRI/PARC

Dave Oran

Network Systems Research & Design

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118)



Outline

 What FLIC does (super quick recap)
* Updates since -04
* Next steps



What FLIC does

It provides a manifest of hashes that make up all the
segments of a piece of application data.

The manifest is hierarchical — that is the hash pointers
can point to application data or to more manifests.

There is a canonical traversal order. Metadata could
provide other traversal hints, such as for video.

FLIC has its own, extensible, encryption mechanism.
Manifest encryption does not need to be related to
content encryption.

FLIC has several Interest construction techniques. The

publisher can choose one or more of these naming
techniques. More techniques could be added.



Main Update

* Segmented Schema

— A schema defines how a consumer constructs an
Interest name from the manifest entries.

— Segmented Schema means to use a name prefix
plus a segment number plus a hash.
— A schema applies to a single Name Constructor.

* Typically one name constructor is used for Manifest
objects and one is used for app data objects.



Main Update

 Segmented Name Schema

— The publisher uses segment # in the name, e.g.
/foo/bar/1, /foo/bar/2

— For each Name Constructor that uses Segmented
Name, the consumer must track the segment
number.

— For sane use, the segment numbers should track
the Manifest in-order traversal, as the App data is
defined to be reconstructed by that traversal.



How to track Segment

e Option 1 (the previous default)

— The consumer stars with the first hash pointer of
the Name Constructor and assigns it O, then it
must go in-order through the manifest and
increment the segment id.

— The consumer must remember the number
between manifest objects.

— The consumer must retrieve every manifest object
in-order.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 6



How to track Segment # (part 2)

e Option 2 (the previous alternative)

— The publisher uses Annotated Hash Pointers and
has an annotation that explicitly gives the
segment #.

— For sane operation, the segment numbers should
go in traversal order.

— Some applications, like audio/video media, might
want to skip to a different segment number, or
data de-dup apps might refer to common byte
strings.



How to track Segment # (part 3)

e Option 3 (the new piece)

— Each Hash Group in a Manifest object includes
metadata that says what the starting Segment ID
is. A consumer then only needs to know its offset
within that one object to create the Segment Id.



Notes on Segment Numbers (1)

 What FLIC requires

— For a given name prefix, a segment number is only
used once (i.e. each segment number has a single
unique object hash) in the data names.

— The consumer is not required to enforce this.

* What FLIC allows
— A segment number may be used more than once.
— A segment number may not be used by the publisher.
— A consumer may skip segments or go out-of-order.



Notes on Segment Numbers (2)

* For general sanity:

— The publisher should use O, ..., N-1 as in-order
segment numbers when creating the data objects.

— The manifest should use a single mechanism
(annotated pointers or StartSegmentlds).

— The in-order traversal should fetch O, ..., N-1in
order.

* None of those are mandatory



Complications (1)

 Q: What happens if a publisher uses an
Annotated Hash Group but only includes a
Segment |d annotation for some pointers?

* A: The publisher must include a
StartSegmentld in the Hash group and the
consumer proceeds as Option 3. If a pointer
has an explicit Segmentld, the consumer uses
that and does not increment the implicit
segment id.



Complications (2)

* Q2: What if the Hash Group uses Segmented
Naming, but the Hash Group does not have a
StrartSegmentld?

 A2: Then it must be an annotated hash group
and every pointer must have an explicit
segment id. Otherwise, it is a malformed
manifest and should be discarded.



Complications (3)

* Q3: A publisher uses a regular Hash Group with
Segmented Name schema. It includes a
StartSegmentld for each Hash Group. But the
numbers overlap.

— E.g. Manifest #1 has StartSegmentld 0 and 10
elements and Manfest #2 has StartSegmentld 5 and
10 elements.

 A3a: The app data has 20 elements, with the 5-9
and 10-14 the same.

e A3b: Don’t do this.



Conclusion

e The data associated with a Name Constructor is
assembled according to the Manifest in-order
traversal.

— Segment numbers do not guide the re-assembly. They
are just part of the name of the pieces.

— A publisher can use segment numbers in non-sane
ways, but if the in-order traversal is correct, then that
use, although screwy, is correct. We don’t
recommend this, but we do not prohibit it.

— Data de-duplication is the only valid use case | can
think of.



Nov 7, 2023

Q&A

draft-irtf-icnrg-flic-05 (IETF 118)

15



