
File-Like ICN Collections (FLIC)
draft-irtf-icnrg-flic-05

IETF 118, Prague

Marc Mosko
SRI/PARC

Dave Oran
Network Systems Research & Design

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 1

Outline

• What FLIC does (super quick recap)
• Updates since -04
• Next steps

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 2

What FLIC does
• It provides a manifest of hashes that make up all the

segments of a piece of application data.
• The manifest is hierarchical – that is the hash pointers

can point to application data or to more manifests.
• There is a canonical traversal order. Metadata could

provide other traversal hints, such as for video.
• FLIC has its own, extensible, encryption mechanism.

Manifest encryption does not need to be related to
content encryption.

• FLIC has several Interest construction techniques. The
publisher can choose one or more of these naming
techniques. More techniques could be added.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 3

Main Update

• Segmented Schema
– A schema defines how a consumer constructs an

Interest name from the manifest entries.
– Segmented Schema means to use a name prefix

plus a segment number plus a hash.
– A schema applies to a single Name Constructor.
• Typically one name constructor is used for Manifest

objects and one is used for app data objects.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 4

Main Update

• Segmented Name Schema
– The publisher uses segment # in the name, e.g.

/foo/bar/1, /foo/bar/2
– For each Name Constructor that uses Segmented

Name, the consumer must track the segment
number.

– For sane use, the segment numbers should track
the Manifest in-order traversal, as the App data is
defined to be reconstructed by that traversal.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 5

• Option 1 (the previous default)
– The consumer stars with the first hash pointer of

the Name Constructor and assigns it 0, then it
must go in-order through the manifest and
increment the segment id.

– The consumer must remember the number
between manifest objects.

– The consumer must retrieve every manifest object
in-order.

How to track Segment #

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 6

How to track Segment # (part 2)

• Option 2 (the previous alternative)
– The publisher uses Annotated Hash Pointers and

has an annotation that explicitly gives the
segment #.

– For sane operation, the segment numbers should
go in traversal order.

– Some applications, like audio/video media, might
want to skip to a different segment number, or
data de-dup apps might refer to common byte
strings.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 7

• Option 3 (the new piece)
– Each Hash Group in a Manifest object includes

metadata that says what the starting Segment ID
is. A consumer then only needs to know its offset
within that one object to create the Segment Id.

How to track Segment # (part 3)

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 8

Notes on Segment Numbers (1)

• What FLIC requires
– For a given name prefix, a segment number is only

used once (i.e. each segment number has a single
unique object hash) in the data names.

– The consumer is not required to enforce this.

• What FLIC allows
– A segment number may be used more than once.
– A segment number may not be used by the publisher.
– A consumer may skip segments or go out-of-order.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 9

Notes on Segment Numbers (2)

• For general sanity:
– The publisher should use 0, …, N-1 as in-order

segment numbers when creating the data objects.
– The manifest should use a single mechanism

(annotated pointers or StartSegmentIds).
– The in-order traversal should fetch 0, …, N-1 in

order.

• None of those are mandatory

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 10

Complications (1)

• Q: What happens if a publisher uses an
Annotated Hash Group but only includes a
Segment Id annotation for some pointers?

• A: The publisher must include a
StartSegmentId in the Hash group and the
consumer proceeds as Option 3. If a pointer
has an explicit SegmentId, the consumer uses
that and does not increment the implicit
segment id.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 11

Complications (2)

• Q2: What if the Hash Group uses Segmented
Naming, but the Hash Group does not have a
StrartSegmentId?

• A2: Then it must be an annotated hash group
and every pointer must have an explicit
segment id. Otherwise, it is a malformed
manifest and should be discarded.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 12

Complications (3)

• Q3: A publisher uses a regular Hash Group with
Segmented Name schema. It includes a
StartSegmentId for each Hash Group. But the
numbers overlap.
– E.g. Manifest #1 has StartSegmentId 0 and 10

elements and Manfest #2 has StartSegmentId 5 and
10 elements.

• A3a: The app data has 20 elements, with the 5-9
and 10-14 the same.

• A3b: Don’t do this.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 13

Conclusion

• The data associated with a Name Constructor is
assembled according to the Manifest in-order
traversal.
– Segment numbers do not guide the re-assembly. They

are just part of the name of the pieces.
– A publisher can use segment numbers in non-sane

ways, but if the in-order traversal is correct, then that
use, although screwy, is correct. We don’t
recommend this, but we do not prohibit it.

– Data de-duplication is the only valid use case I can
think of.

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 14

Q&A

Nov 7, 2023 draft-irtf-icnrg-flic-05 (IETF 118) 15

