Considerations for Adjustments of ESP Trailer

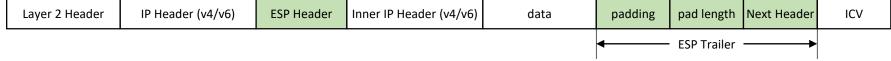
draft-pan-ipsecme-esp-trailer-adjustment

Wei Pan Chenyuan Fang

IETF 118

November 2023

Motivation


- To improve IPsec performance:
 - efficient algorithms, such as AES-GCM
 - cryptographic hardware acceleration
 - ...
- Still not enough for high traffic bandwidth scenarios:
 - E.g., the traffic between data centers can be Tbps or even higher
- What can be considered?
 - MACsec [IEEE 802.1AE] can reach the line rate
 - The magic is that it's totally implemented by hardware (not only the encryption/decryption operations)
 - So, implementing the whole IPsec by hardware too

Problem Statement

• Current ESP packet format

• Transport mode

Layer 2 Header	IP Header (v4/v6)	ESP Header	data	padding	pad length	Next Header	ICV
				•	- ESP Trailer		
Tunnel mode							

- Next Header field decides how to reset the "next header" related fields in the L2 or IP header. But, it's at the end of the packet...
- The chip must cache the packet before getting the Next Header field
 - **DECRYPT THEN TRANSMIT** cannot be achieved
 - More chip area is needed to implement caching
 - More chip area means more energy consumption, which is not eco-friendly

Possible Solution 1

- Super high IPsec performance is only needed at scenarios like data centers, and these scenarios usually use ESP tunnel mode.
- A solution for ESP tunnel mode: Judge the type of inner IP header according to its first byte
 - In ESP tunnel mode, it's an IP packet encapsulated after ESP header.
 - The first byte of IPv4 header or IPv6 header indicates the IP version, 4 for IPv4 and 6 for IPv6.
- Advantage Easy to implement
- Disadvantage

- Only ESP tunnel mode can be supported
- · Dummy Packet function cannot be supported

Possible Solution 2

- A solution for both mode: Move the ESP trailer immediately after ESP Header
- Advantage
 · Both ESP transport and tunnel modes are supported
- Disadvantage
 Significant changes to ESP protocol

Further Considerations

- What's the reason of putting ESP trailer at the end of the packet?
- Is this problem worth solving?
 - What solution is more reasonable?
 - Any other solution?