
Privacy for Key Transparency
Kevin Lewi

IETF 118 - November 10, 2023



Outline
● Recap on key transparency operations
● Different ways in which a design can leak privacy
● Privacy tools
● Handling data deletion and retention
● Takeaways



Key Transparency Operations
Service provider keeps track of a DB of user identifiers 
to public keys.

Users can:

1. Add/Update their entry
2. Search / Lookup: User checks an entry in the 

database + inclusion proof
3. Monitor / Audit: User (or auditor) checks 

consistency proofs of append-onlyness

Identifiers Public Keys

Alice pk_Alice

Bob pk_Bob

… …

Service providers need to be careful to not inadvertently leak user data through 
these operations!



Privacy Leakage for KT proofs
Example #1: Merkle tree inclusion proofs

Problem #1: Traditional Merkle tree inclusion 
proofs reveal the approximate height of the tree.

- But maybe this isnʼt too bad…

Problem #2: They also reveal the values of 
neighboring nodes along the path to the root

- Can be partially addressed with VRFs, will discuss this later



Privacy Leakage for KT proofs
Example #2: Monitoring when users update their entries

Design question: If a user updates their public key 5 times, do these 5 updates get 
stored together, or is it indistinguishable (to an adversary) from 5 different users 
updating their own keys?

If itʼs the former, then an adversary could potentially learn statistics such as: the 
frequency distribution of how often people are updating keys (some people seem to be 
updating once per day, but then suddenly stopped)



Privacy Leakage for KT proofs
Example #3: Update history in the context of identifier re-use

Should a user be able to look arbitrarily far into the past for the update history for their 
phone numbers?

Phone number recycling: What if your phone number was owned by a famous person, 
and now you have control over it… does this mean that the service provider will show 
you information regarding the behavior patterns of the previous owner?



Privacy Leakage for client queries
Example #4: Service provider learns information based on client queries

For instance, if the service provider sees that one entry is queried a lot, they learn some 
information about this user (they are popular).

To some extent, this is a privacy problem with a regular database (no key transparency) 
anyway, but with key transparency we are asking clients to also query for their key 
update history.



Privacy-Preserving Tools: VRFs
Verifiable Random Functions (VRFs)

- VRF(server key, phone number) -> (random id, proof)
- VRFVerify(public key, phone number, random id, proof) -> true/false

Typically, the “position” of a leaf node in a Merkle prefix tree is uniquely determined by 
the user identifier.

To preserve privacy, we can pass the user identifier through a VRF and use the random 
output to determine the position instead. (CONIKS [MBBFFʼ15])



Privacy-Preserving Tools: VRFs
However, doesnʼt solve all problems

- What happens when a user wants to update their value? Should it modify the 
existing entry?

- One option: Pass (user identifier, version #) through the VRF, so that each key 
update is placed in a random location in the tree (SEEMless [CDGMʼ19])

Issue: What if the server VRF private key gets leaked?

- Rotatable Zero Knowledge Sets (https://eprint.iacr.org/2022/1264.pdf) addresses 
this issue

- Post Quantum-secure VRFs: https://eprint.iacr.org/2022/141 

https://eprint.iacr.org/2022/1264.pdf
https://eprint.iacr.org/2022/141


Privacy-Preserving Tools: zkSNARKs
Another option, highly theoretical though, is to use zero knowledge proofs to hide 
information.

In theory, zkSNARKs can be used to achieve ideal privacy.

However, zkSNARKs donʼt appear to be (I think?) practical enough for key transparency 
deployments today.

… But this is an open research question and advancements in zk technology could 
change this in the future!



Handling data deletion
Merkle tree nodes correspond to hashes of user data

Can we just delete the raw user data and leave the hashes? Does this suffice for “deleting the user 
data”?

Should service providers be required to keep a complete history of all data updates since the 
beginning of time?

Solutions:

- “Reset the tree”
- Temporary consistency requirements:

- Key transparency for a certain time period (of, say, the past 2 years), and all older data 
gets automatically cleaned up



Takeaways
- Managing privacy leakage can be tricky

- Especially because more private usually means less performant / scalable
- We should have extreme clarity about the privacy leakage for any designs we 

propose
- Ideally: Provable guarantees, i.e. “This proof will leak _____, and nothing else”

- Different service providers may make different choices about what is ok / not ok to 
leak

- And we could potentially have some flexibility in the design we settle on for allowing 
“more private” vs. “less private” solutions


