
Implementer Feedback:
Lightweight Authorization using EDHOC

draft-ietf-lake-authz (a.k.a. zero-touch authorization)
https://github.com/openwsn-berkeley/edhoc-rs

Geovane Fedrecheski, Inria

IETF 118, LAKE WG | Prague, November 6, 2023 1

Recap

● The Device (U) wants to enroll into a domain over a constrained link
● The Device and Domain Authenticator (V) mutually authenticates and

authorizes each other
● The procedure is assisted by an Enrollment Server (W) located in a

non-constrained network

Adapted from: https://datatracker.ietf.org/meeting/117/materials/slides-117-lake-lightweight-authorization-for-edhoc-second-version 2

Recap
U V W

3

Implementation: on top of edhoc-rs¹

● A microcontroller-optimized implementation of EDHOC in Rust

○ no_std, no heap, inline CBOR encoding

● Effort towards formal verification with hax²

● Configurable crypto backends

● Skeleton for EAD handlers

¹ https://github.com/openwsn-berkeley/edhoc-rs
² https://github.com/hacspec/hax

4

Status: lake-authz in edhoc-rs

Done ✅
● Preparation and processing of:

○ EAD_1, EAD_2, Voucher_Request, and Voucher_Response

● Validation with test vectors (traces)

● Fields for stateless operation of V (opaque state)

● Have V send CRED_V by value in EDHOC message_2

● Mocked W (runs alongside V)

To-do ➡
● Implement W, have V communicate with W, authenticate V and W

● Build a demo 🤖 5

message_2: CRED_V by value

In many cases, EDHOC only sends ID_CRED_X by reference

This requires pre-provisioning credentials in I and R

lake-authz proposes “zero touch” network join: avoid pre-provisioning

While lake-authz addresses that CRED_V can be sent over the air

Implementers would benefit from more direct guidance

Possible action:

● add clear requirement that “implementations SHOULD support sending

credentials by value”

● add considerations on increased message sizes (60-90 bytes for RPK)
6

message_2: processing w/ respect to CRED_V

The Voucher is verified by re-computing:

Voucher = bstr .cbor EDHOC-Expand(PRK, info, length)

Where info contains CRED_V

Since U trusts W, and the Voucher (emitted by W) is trusted, then U can trust V

In other words, CRED_V is now considered valid, and can be used in the remaining

EDHOC processing.

Possible action: make it more clear that the Voucher helps U in trusting CRED_V

7

Computation of K_1 and IV_1

Draft excerpt:

IV_1 = EDHOC-Expand(PRK, info, length*) uses the following input to

the info struct:

- (...)

- length** is length of nonce of the EDHOC AEAD algorithm in bytes

Comment: length* happens to have the same value of length**, but the text is only

explicit about length**

8

message_3: EAD handler and ID_CRED_I

EAD handling:

● there is "core" EDHOC handling and EAD handling

● how to trigger EAD handling without an EAD_3? (aka should we have an EAD_3?)

processing ID_CRED_I (usually a reference):

● this is Trust On First Use (TOFU)*

● but given that W trusts U, V should be able to trust U

● however, the Voucher is not bound to CRED_U

● question: should it have such a binding?

9* https://www.ietf.org/archive/id/draft-tiloca-lake-edhoc-implem-cons-00.html#name-trust-models-for-learning-n

Final remarks

Comments:

● EDHOC's EAD mechanism works well for extensibility

● Reuse of EDHOC primitives helps a lot

● Some clarifications can be done in the draft

● Questions to discuss regarding message_3

Plans:

● Build a demo (would need a W)

● Interop testing would be cool (idem)

10

