Use of KYBER in the Cryptographic Message Syntax (CMS)

IETF LAMPS 118

draft-ietf-lamps-cms-kyber-01

Julien Prat (CryptoNext Security)
Mike Ounsworth (Entrust)

Editorial:

- References to related draft RFCs:
 - draft-ietf-lamps-cms-kemri
 - draft-ietf-lamps-kyber-certificates
 - draft-housley-lamps-cms-sha3-hash

Use in CMS:

- *RecipientInfo Conventions:* Details of the KEMRecipientInfo content when Kyber is used.
- *Certificate Conventions:* No update
- *SMIME Capabilities Attribute Conventions:* No update

Algorithm limitations:

- Algorithms combinations to be used in KEM-TRANS are limited to Kyber

<table>
<thead>
<tr>
<th>Security Level</th>
<th>KEM</th>
<th>KDF</th>
<th>WRAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 bits</td>
<td>KYBER512</td>
<td>HKDF-SHA256 or HKDF-SHA3-256</td>
<td>AES128-WRAP</td>
</tr>
<tr>
<td>192 bits</td>
<td>KYBER768</td>
<td>HKDF-SHA384 or HKDF-SHA3-384</td>
<td>AES192-WRAP</td>
</tr>
<tr>
<td>256 bits</td>
<td>KYBER1024</td>
<td>HKDF-SHA512 or HKDF-SHA3-512 or NULL</td>
<td>AES256-WRAP</td>
</tr>
</tbody>
</table>
Open Points:
• Should the document become "Use of ML-KEM in the Cryptographic Message Syntax (CMS)?"

Next Steps:
• New OIDs to be defined:
 • id-kem-trans (KEM-TRANS mechanism)
 • id-kyber512, id-kyber768, id-kyber1024 (KYBER algorithms)
• ASN1 module to be updated
• Test vectors to be added
Thank you!

Julien PRAT
julien.prat@cryptonext-security.com

contact@cryptonext-security.com
www.cryptonext-security.com
https://www.linkedin.com/company/cryptonext-security

THE NEW GENERATION OF QUANTUM RESISTANT AND SOVEREIGN CRYPTOGRAPHY
THE NEW GENERATION OF QUANTUM RESISTANT AND SOVEREIGN CRYPTOGRAPHY
RFC Purpose:
Define how to use Kyber within the Cryptographic Message Syntax (CMS)

CMS Context:
One of the typical use case of the CMS Envelopped-Data Content is to:
1. randomly generate a CEK,
2. encrypt the data with a symmetric algorithm using this CEK
3. individually send the CEK to one or more recipients protected by asymmetric cryptography in a RecipientInfo object.

Requirements:
Need to define a new Key Transport mechanism fulfilling the following requirements:
• the Key Transport Mechanism SHALL be secure against quantum computers.
• the Key Transport Mechanism SHALL be able to take the Content-Encryption Key (CEK) as input.

=> Definition of the **KEM-TRANS mechanism**
A key encapsulation mechanism (KEM) is an asymmetric cryptographic algorithm allowing secret sharing between two entities.

KEM consisting of 3 functions:
• Key generation **KeyGen()** :
 • Returns a public key and a private key (PK, SK)
• Encapsulation **Encaps**(PK):
 • Takes as input the public key
 • Returns a ciphertext CT and a shared secret SS
• Decapsulation **Decaps**(SK, CT):
 • Takes as input the private key and the ciphertext
 • Returns the shared secret SS

=> Impossible to encrypt a fixed CEK with KEM
A key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value using a pseudorandom function.

KDF consists of 1 function:
- Key Derivation \textbf{Derive}(SS, KEK_LEN) :
 - Takes as input a shared secret SS and the length of the output secret key KEK_LEN
 - Returns a secret key KEK
A wrapping algorithm (WRAP) is a symmetric cryptographic algorithm protecting data in confidentiality and in integrity.

WRAP consists of 2 functions:
• Wrapping \textbf{Wrap}(KEK, K):
 • Takes as input a wrapping key KEK and a plaintext key K
 • Returns a wrapped key WK
• Unwrapping \textbf{Unwrap}(KEK, WK):
 • Takes as input a wrapping key KEK and a wrapped key WK
 • Returns the plaintext key K
KEM-TRANS MECHANISM - DESCRIPTION

Assumptions:
Sender has been provided with:
• `recipPubKey`: the recipient’s public key for KEM.
• `K`: the keying data to be transported, length is compatible with the chosen WRAP algorithm.

Sender's operations:
1. `(SS, CT) = KEM.encaps(recipPubKey)`
2. `KEK = KDF.derive(SS, kekLen)`
3. `WK = WRAP.wrap(KEK, K)`
4. `EK = (WK || CT)`

Recipient's operations:
1. `(WK || CT) = EK`
2. `SS = KEM.decaps(recipPrivKey, CT)`
3. `KEK = KDF.derive(SS, kekLen)`
4. `K = WRAP.Unwrap(KEK, WK)`

=> KEM-TRANS mechanism allows the transport of any keying data, including CMS CEK
=> KEM-TRANS mechanism can be instantiated with any KEM algorithm, including a Quantum-Safe KEM, making the KEM-TRANS mechanism Quantum-Safe
RecipientInfo Conventions:
• RecipientInfo Type MUST be OtherRecipientInfo using the KEMRecipientInfo

Certificate Conventions:
• Key Usage Extension MUST contain only the value keyEncipherment
• Subject Public Key Info MUST be set to id-alg-xxx-kem OID (KEM algorithm)

SMIME Capabilities Attribute Conventions:
SMIMECapability = {
• CapabilityID = id-kem-trans
• Parameters = GenericKemTransParameters
}

GenericKemTransParameters = {
• kem KeyEncapsulationMechanism
• kdf KeyDerivationFunction
• wrap KeyWrappingMechanism
}
Thank you!