

P4-LISP: A P4-Based High-Performance Router for the Locator/Identifier Separation Protocol

Benjamin Steinert, Marco Häberle, Jan-Oliver Nick, Dino Farinacci, Michael Menth

- ► What is P4?
- ► P4-LISP router architecture & components
 - LISP control plane lispers.net
 - Local P4 controller
 - P4 data plane
- ► P4-LISP evaluations

Data Plane Programming with P4

- ► P4 = Programming Protocol-independent Packet Processors
- Programmable header processing
- ▶ Deployable on high-performance hardware
- ► More: see P4 survey [2]

[2] F. Hauser et al., "A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research," Journal of Network and Computer Applications, vol. 212, 2023.

P4-LISP Router Architecture

- ► Forward packets to P4 controller where no table-entries / mappings are available
- ► (P)xTR: encapsulate, decapsulate
- ► RTR: re-encapsulate
- ► NAT-Traversal and LISP-NAT
- ► Mobile Node support: double encapsulation
- ► Security measures
 - Rate-limit packets to P4 controller to 1pps, to not overload the P4 controller
 - Process packets originating only from registered source EIDs
 - Process packets destined only to valid destination EIDs

P4-LISP – Example Packet Flow

P4 Data Plane – Simplified xTR MAT Flowchart

P4 Data Plane – Simplified MAT Flowchart

- ► Bandwidth evaluation
- ► Functional unit tests
- ► Latency analysis
- ► P4 controller performance

- ▶ Data rate evaluation with re-encapsulation performs with around 100 Gbit/s
- ► Evaluations using P4TG [3]

[3] S Lindner, M. Häberle, and M. Menth, "P4TG: 1Tb/s Traffic Generation for Ethernet/IP Networks", IEEE Access, 2023.

Functional Unit Tests

- ▶ Different scenarios were tested (xTR, PxTR, RTR)
- ► Many extensions are supported
 - NAT traversal
 - Mobile Node
 - LISP-NAT

• ...

TABLE I
UNIT TESTS FOR DIFFERENT LISP ROUTER TYPES.

Router	No.	Test description		
xTR	1	Packet encapsulation		
	2	Packet decapsulation		
	3	Load balance to multiple ETRs		
	4	Drop packet with invalid source address		
	5	Drop packet towards disallowed destination		
	6	NAT traversal		
	7	LISP-MN to lisp node		
	8	LISP-MN to non-LISP endpoint		
	9	LISP-MN to LISP-MN (EID)		
	10	LISP-MN to LISP-MN (RLOC)		
	11	Node to LISP-MN in other LISP domain		
	12	LISP-MN receives packet		
	13	Native Forwarding without encapsulation		
	14	LISP-NAT outbound traffic		
	15	LISP-NAT inbound traffic		
PITR	16	Encapsulate for non-LISP host		
	17	Encapsulate from LISP-MN (RLOC)		
	18	Encapsulate from non-LISP host to LISP-MN (EID)		
	19	Drop packet with invalid source outside		
	20	Decapsulate packet with one encapsulation		
PETR	21	Decapsulate packet with two encapsulations		
LLIK	22	Drop encapsulated packet with non-registered source		
		address		
	23	Drop twice encapsulated packet with non-registered source address		
RTR	24	Send packet towards node behind NAT		
	25	Send packet towards LISP-MN behind NAT		
	26	Receive packet from node behind NAT for encapsu-		
		lation		
	27	Receive packet from node behind NAT for encapsu-		
		lation to LISP-MN		
	28	Receive packet from node behind NAT to forward		
		without encapsulation		
	29 Drop packet if neither source nor c			
		known		

Latency Analysis

► How large is the latency introduced by different components in P4-LISP?

TABLE II

MEAN AND STANDARD DEVIATION (SD) OF THE LATENCY CAUSED BY A

CACHE-MISS IN THE P4-LISP DATA PLANE.

Steps	Mean (ms)	SD (ms)	Description of the steps
a-i	19.74	0.81	Worst-case latency: First packet sent by source until received by destination.
a-c	4.45	0.16	P4 controller delay for issuing discovery message.
d-e	12.61	0.72	Control plane delay.
f	0.80	0.10	P4 controller delay for processing control plane answer.
g-i	1.78	0.20	P4 controller delay for inserting table entry, until packet reaches destination.

P4 Controller Performance

- ► Send 1000 packets with different destination IP addresses where no mapping is available
 - Using nping [4]
 - All of these packets are forwarded to the local P4 controller
 - Different packet rates are examined

- ➤ Overload at ~150 pps
 - Latency rises
 - No packet drops observed

[4] https://nmap.org/nping/

- ▶ P4-LISP is a high-performance LISP router implementation for data rates ~100 Gb/s
 - Open-source: https://github.com/uni-tue-kn/P4-LISP
 - Leverages open-source control plane lispers.net lispers.net lispers.net
 - All LISP tunnel router types are implemented in a single P4 program (ITR, ETR, PITR, PETR, RTR)
 - RTR can perform re-encapsulation at line rate
 - Double encapsulation also at line rate, e.g., for LISP-MN
 - Some security features against DoS attacks
- ► Supports multiple extensions
 - LISP Mobile Node
 - NAT-Traversal
 - Interworking mechanisms (e.g., LISP-NAT)
 - Multihoming, load-balancing, and traffic engineering