Using the Spin Bit and ECN with QUIC
Adoption and Challenges in the Wild

Ike Kunze12*, Constantin Sander12*, Leo Blöcher2*, Mike Kosek2†, and Klaus Wehrle12*

* RWTH Aachen University
† TU Munich

1 Does It Spin? On the Adoption and Use of QUIC’s Spin Bit
2 ECN with QUIC: Challenges in the Wild

https://www.comsys.rwth-aachen.de/
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)

<table>
<thead>
<tr>
<th>Toplists</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa</td>
<td>Umbrella</td>
<td></td>
</tr>
<tr>
<td>Majestic</td>
<td>Tranco</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICANN CZDS</th>
<th>com/net/org</th>
<th>> 1000 other TLDs</th>
</tr>
</thead>
</table>
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)

<table>
<thead>
<tr>
<th>Toplists</th>
<th>DNS resolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa</td>
<td>“Total”</td>
</tr>
<tr>
<td>Umbrella</td>
<td></td>
</tr>
<tr>
<td>Majestic</td>
<td></td>
</tr>
<tr>
<td>Tranco</td>
<td></td>
</tr>
</tbody>
</table>

- ICANN CZDS

- com/net/org

- > 1000 other TLDs
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)

<table>
<thead>
<tr>
<th>Toplists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa</td>
</tr>
<tr>
<td>Umbrella</td>
</tr>
<tr>
<td>Majestic</td>
</tr>
<tr>
<td>Tranco</td>
</tr>
</tbody>
</table>

ICANN CZDS

com/net/org

> 1000 other TLDs

"Total"

DNS resolver

DNS

“Resolved”
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)

<table>
<thead>
<tr>
<th>Toplists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa</td>
</tr>
<tr>
<td>Umbrella</td>
</tr>
<tr>
<td>Majestic</td>
</tr>
<tr>
<td>Tranco</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICANN CZDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>com/net/org</td>
</tr>
<tr>
<td>> 1000 other TLDs</td>
</tr>
</tbody>
</table>

```
zgrab2 + quic-go
```
Methodology

- Large scale longitudinal QUIC web measurements (Apr. 2022 – May 2023)

```
<table>
<thead>
<tr>
<th>Toplists</th>
<th>Alexa</th>
<th>Umbrella</th>
<th>Majestic</th>
<th>Tranco</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICANN CZDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>com/net/org</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt; 1000 other TLDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Methodology:
- `zgrab2 + quic-go`
- DNS resolver
- DNS
- "Resolved" "QUIC"
- "Total"
- "ECN Use" 1 "Spin" 0
- Alexa, Umbrella, Majestic, Tranco
- ICANN CZDS, com/net/org, > 1000 other TLDs

Webhosting and DNS resolver performance:

- Webhosting DNS resolution success
- QUIC protocol usage
- ECN Use
- Spin
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

![Diagram of client-server interaction with spin bits]
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

- Optional and few public stacks support it
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

- **Optional** and few public stacks support it

Q1: Who uses the spin bit?
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

- Optional and few public stacks support it

- End-points must disable it sometimes

 ▶ RFC 9000 vs RFC 9312 and different ways for disabling

Q1: Who uses the spin bit?
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

- **Optional** and few public stacks support it

- End-points **must** disable it sometimes
 - RFC 9000 vs RFC 9312 and different ways for disabling

Q1: Who uses the spin bit?
Q2: How is the spin bit used?
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

![Diagram showing the spin bit in use](image)

- **Optional** and few public stacks support it

- **End-points must disable it sometimes**
 - RFC 9000 vs RFC 9312 and different ways for disabling

- **Its practical usefulness unknown**
 - Mainly studied in test settings [1,2]
 - Includes app. delay & vulnerable to reordering

Single-bit, explicit RTT measurement signal

Optional and few public stacks support it

End-points must disable it sometimes
 ▶ RFC 9000 vs RFC 9312 and different ways for disabling

Its practical usefulness unknown
 ▶ Mainly studied in test settings [1,2]
 ▶ Includes app. delay & vulnerable to reordering

Q1: Who uses the spin bit?
Q2: How is the spin bit used?
Single-bit, explicit RTT measurement signal

Optional and few public stacks support it

End-points must disable it sometimes
- RFC 9000 vs RFC 9312 and different ways for disabling

Its practical usefulness unknown
- Mainly studied in test settings [1,2]
- Includes app. delay & vulnerable to reordering

Q1: Who uses the spin bit?
Q2: How is the spin bit used?
The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

 ![Diagram of spin bit usage]

- **Optional** and few public stacks support it

- **End-points** must disable it sometimes
 - RFC 9000 vs RFC 9312 and different ways for disabling

- **Its practical usefulness unknown**
 - Mainly studied in test settings [1,2]
 - Includes app. delay & vulnerable to reordering

Q1: Who uses the spin bit?

Q2: How is the spin bit used?

Q3: How accurate are the measurements?

The QUIC Spin Bit in the Wild

- Single-bit, explicit RTT measurement signal

- **Optional** and few public stacks support it

- End-points **must** disable it sometimes
 - RFC 9000 vs RFC 9312 and different ways for disabling

- **Its practical usefulness unknown**
 - Mainly studied in test settings [1,2]
 - Includes app. delay & vulnerable to reordering

Q1: Who uses the spin bit?
Q2: How is the spin bit used?
Q3: How accurate are the measurements?

Spin Bit Adoption (IPv4)

Q1: Is the spin bit used and by whom?

<table>
<thead>
<tr>
<th>Toplists</th>
<th>Total</th>
<th>Resolved</th>
<th>QUIC</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Domains</td>
<td>2.73 M</td>
<td>1.94 M</td>
<td>547.11 k</td>
<td>6.9 %</td>
</tr>
<tr>
<td>com/net/org</td>
<td>183.05 M</td>
<td>158.89 M</td>
<td>18.42 M</td>
<td>11.1 %</td>
</tr>
</tbody>
</table>
Spin Bit Adoption (IPv4)

Q1: Is the spin bit used and by whom?

<table>
<thead>
<tr>
<th>Toplists</th>
<th>Total</th>
<th>Resolved</th>
<th>QUIC</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Domains</td>
<td>2.73 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#IPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>com/net/org</td>
<td>#Domains</td>
<td>183.05 M</td>
<td>158.89 M</td>
<td>11.1 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18.42 M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.20 M</td>
<td>46.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>242.88 k</td>
<td></td>
</tr>
</tbody>
</table>
Spin Bit Adoption (IPv4)

Q1: Is the spin bit used and by whom?

Toplists

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Resolved</th>
<th>QUIC</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Domains</td>
<td>2.73 M</td>
<td>1.94 M</td>
<td>547.11 k</td>
<td>6.9 %</td>
</tr>
<tr>
<td>#IPs</td>
<td>774.83 k</td>
<td>118.54 k</td>
<td>15.2 %</td>
<td></td>
</tr>
</tbody>
</table>

com/net/org

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Resolved</th>
<th>QUIC</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Domains</td>
<td>183.05 M</td>
<td>158.89 M</td>
<td>18.42 M</td>
<td>11.1 %</td>
</tr>
<tr>
<td>#IPs</td>
<td>9.20 M</td>
<td>242.88 k</td>
<td>46.4 %</td>
<td></td>
</tr>
</tbody>
</table>

Overall Rank

<table>
<thead>
<tr>
<th>Overall Rank</th>
<th>QUIC Conn.</th>
<th>AS Organization</th>
<th>Spin</th>
<th>Spin [%]</th>
<th>Spin Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.48 M</td>
<td>Cloudflare</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6.16 M</td>
<td>Google</td>
<td>6.87 k</td>
<td>0.1 %</td>
<td>54</td>
</tr>
</tbody>
</table>
Spin Bit Adoption (IPv4)

Q1: Is the spin bit used and by whom?

<table>
<thead>
<tr>
<th>Toplists</th>
<th>Total</th>
<th>Resolved</th>
<th>QUIC</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Domains</td>
<td>2.73 M</td>
<td>1.94 M</td>
<td>547.11 k</td>
</tr>
<tr>
<td></td>
<td>#IPs</td>
<td>774.83 k</td>
<td>118.54 k</td>
<td>15.2 %</td>
</tr>
<tr>
<td>com/net/org</td>
<td>#Domains</td>
<td>183.05 M</td>
<td>158.89 M</td>
<td>18.42 M</td>
</tr>
<tr>
<td></td>
<td>#IPs</td>
<td>9.20 M</td>
<td>242.88 k</td>
<td>46.4 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Rank</th>
<th>QUIC Conn.</th>
<th>AS Organization</th>
<th>Spin</th>
<th>Spin [%]</th>
<th>Spin Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.48 M</td>
<td>Cloudflare</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6.16 M</td>
<td>Google</td>
<td>6.87 k</td>
<td>0.1 %</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>1.55 M</td>
<td>Hostinger</td>
<td>802.59 k</td>
<td>51.9 %</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>219.25 k</td>
<td>OVH SAS</td>
<td>132.40 k</td>
<td>60.4 %</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>218.21 k</td>
<td>A2 Hosting</td>
<td>129.58 k</td>
<td>59.4 %</td>
<td>3</td>
</tr>
</tbody>
</table>
Q1: Is the spin bit used and by whom?

Spin Bit Adoption (IPv4)

<table>
<thead>
<tr>
<th>Toplists</th>
<th>Total</th>
<th>#Domains</th>
<th>#IPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.73 M</td>
<td>774.83 k</td>
</tr>
<tr>
<td></td>
<td>Resolved</td>
<td>1.94 M</td>
<td>118.54 k</td>
</tr>
<tr>
<td></td>
<td>QUIC</td>
<td>547.11 k</td>
<td>15.2 %</td>
</tr>
<tr>
<td></td>
<td>Spin</td>
<td>6.9 %</td>
<td></td>
</tr>
<tr>
<td>com/net/org</td>
<td></td>
<td>183.05 M</td>
<td>9.20 M</td>
</tr>
<tr>
<td>#Domains</td>
<td></td>
<td>158.89 M</td>
<td>242.88 k</td>
</tr>
<tr>
<td>#IPs</td>
<td></td>
<td>18.42 M</td>
<td>46.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.1 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Rank</th>
<th>QUIC Conn.</th>
<th>AS Organization</th>
<th>Spin</th>
<th>Spin [%]</th>
<th>Spin Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.48 M</td>
<td>Cloudflare</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6.16 M</td>
<td>Google</td>
<td>6.87 k</td>
<td>0.1 %</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>1.55 M</td>
<td>Hostinger</td>
<td>802.59 k</td>
<td>51.9 %</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>219.25 k</td>
<td>OVH SAS</td>
<td>132.40 k</td>
<td>60.4 %</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>218.21 k</td>
<td>A2 Hosting</td>
<td>129.58 k</td>
<td>59.4 %</td>
<td>3</td>
</tr>
<tr>
<td>3.17 M</td>
<td><other></td>
<td></td>
<td>154.51 k</td>
<td>48.8 %</td>
<td></td>
</tr>
</tbody>
</table>
RTT Measurement Accuracy

- Use all connections with spin bit activity
- Compare resulting RTT measurement with QUIC groundtruth
 - Received packet order / Sorted by packet numbers

Q3: How accurate are the measurements?

- Received
- Sorted

Real RTT larger by
Spin RTT larger by

Share

Absolute difference up to .. [ms]
RTT Measurement Accuracy

• Use all connections with spin bit activity
• Compare resulting RTT measurement with QUIC groundtruth

> Received packet order / Sorted by packet numbers

![Graph showing percentage of absolute RTT differences.][1]

Q3: How accurate are the measurements?

[1]: # RTT Measurement Accuracy — Use all connections with spin bit activity — Compare resulting RTT measurement with QUIC groundtruth

- Received packet order / Sorted by packet numbers

![Graph showing percentage of absolute RTT differences.][1]

Q3: How accurate are the measurements?
RTT Measurement Accuracy

- Use all connections with spin bit activity
- Compare resulting RTT measurement with QUIC groundtruth

Q3: How accurate are the measurements?

![Graph showing RTT ratio and absolute difference](image)
Spin Bit – Takeaways

• The spin bit indeed sees use in the wild
 ▶ ~10 % of domains with QUIC support use it
 ▶ 50 – 60 % of underlying hosts

• RTT measurements draw an ambiguous picture
 ▶ Often quite accurate
 ▶ More often large overestimation
 ▶ Some underestimation
Visible QUIC ECN Support

- ECN mirroring: MUST* in QUIC RFC – but can it be used?
- Visit websites via HTTP/3 / QUIC and log ECN counters (from Germany in CW15)

* if accessible, RFC Erratum exists
Visible QUIC ECN Support

- ECN mirroring: MUST* in QUIC RFC – but can it be used?
- Visit websites via HTTP/3 / QUIC and log ECN counters (from Germany in CW15)

Alexa / Tranco / Umbrella / Majestic

- Supports QUIC
- Mirrors ECN

Domains

Supports QUIC
Mirrors ECN

525.58k
3.3%
Domains
2.72M

17.30M
5.6%
Domains
183.28M

- Given that mirroring should be mandatory: Low support

* if accessible, RFC Erratum exists

Ike Kunze & Constantin Sander {kunze,sander}@comsys.rwth-aachen.de
Visible QUIC ECN Support

- ECN mirroring: MUST* in QUIC RFC – but can it be used?
- Visit websites via HTTP/3 / QUIC and log ECN counters (from Germany in CW15)

Alexa / Tranco / Umbrella / Majestic

- Given that mirroring should be mandatory: Low support
- Mainly LiteSpeed HTTP/3 server, Amazon Cloudfront and tests by Google mirror ECN
 - Again low support by hyperscalers and content providers

* if accessible, RFC Erratum exists

Ike Kunze & Constantin Sander {kunze,sander}@comsys.rwth-aachen.de
Clarifying Missing Support

- Stacks could ignore ECN or networks clear codepoints
Clarifying Missing Support

- Stacks could ignore ECN or networks clear codepoints
 - Tracebox tracing for missing ECN (similar to related work)

- No visible ECN clearing for 97.5% of domains
 - 2% visible clearing, 0.5% not traced due to sampling
Clarifying Missing Support

- **Stacks could ignore ECN or networks clear codepoints**
 - Tracebox tracing for missing ECN (similar to related work)

- **No visible ECN clearing for 97.5% of domains**
 - 2% visible clearing, 0.5% not traced due to sampling

- **Single Tier 1 ISP impacts 98.6% of affected domains**
 - Affects smaller hosters, especially after route changes in December 2022
Clarifying Missing Support

- **Stacks could ignore ECN or networks clear codepoints**
 - Tracebox tracing for missing ECN (similar to related work)

- **No visible ECN clearing for 97.5% of domains**
 - 2% visible clearing, 0.5% not traced due to sampling

- **Single Tier 1 ISP impacts 98.6% of affected domains**
 - Affects smaller hosts, especially after route changes in December 2022

- **Missing support by content providers not due to clearing**
 - Support ECN via TCP, QUIC stacks or undiscovered middleboxes ignore ECN
ECN Validation Challenges

- **QUIC requires ECN validation to use ECN**
 - Checks for the first packets whether
 - Timeouts occur with ECN
 - Wrong codepoints
 - Missing / undercounted codepoints
ECN Validation Challenges

- QUIC requires ECN validation to use ECN
 - Checks for the first packets whether
 - Timeouts occur with ECN
 - Wrong codepoints
 - Missing / undercounted codepoints

- 0.2% of com/net/org pass validation ⇔ 96% of mirroring domains fail due to
ECN Validation Challenges

- **QUIC requires ECN validation to use ECN**
 - Checks for the first packets whether
 - Timeouts occur with ECN
 - Wrong codepoints
 - Missing / undercounted codepoints

- **0.2% of com/net/org pass validation ⇔ 96% of mirroring domains fail due to**
 - **Undercounting**
 - Google AS
 - Related work suspects DCTCP
 - LiteSpeed Server
 - Packetno. switch can disable ECN
 - **Re-marking**
 - Again network elements of Tier 1 ISP
 - Also rewriting of codepoints
 - Again Google’s AS
 - Potentially again DCTCP usage
ECN with QUIC – Takeaways

- **Multiple challenges for ECN with QUIC**
 1. Several QUIC stacks do not mirror ECN
 2. Some network elements clear signals
 3. Often ECN validation fails (stack + network impairments)
ECN with QUIC – Takeaways

- **Multiple challenges for ECN with QUIC**
 - 1. Several QUIC stacks do not mirror ECN
 - 2. Some network elements clear signals
 - 3. Often ECN validation fails (stack + network impairments)
 - Usage also limited on global scale and for IPv6
ECN with QUIC – Takeaways

- **Multiple challenges for ECN with QUIC**
 - 1. Several QUIC stacks do not mirror ECN
 - 2. Some network elements clear signals
 - 3. Often ECN validation fails (stack + network impairments)
 - Usage also limited on global scale and for IPv6

- **Beyond QUIC: significant impact for novel ECN mechanisms such as L4S**
 - ECT(0) \rightarrow ECT(1) re-marking detrimental for L4S and traditional traffic on L4S routers
ECN with QUIC – Takeaways

- **Multiple challenges for ECN with QUIC**
 - 1. Several QUIC stacks do not mirror ECN
 - 2. Some network elements clear signals
 - 3. Often ECN validation fails (stack + network impairments)
 - Usage also limited on global scale and for IPv6

- **Beyond QUIC: significant impact for novel ECN mechanisms such as L4S**
 - ECT(0) → ECT(1) re-marking detrimental for L4S and traditional traffic on L4S routers

- **Trend is probable to be increasing, changes over time visible**
 - QUIC RFC Erratum on ECN may trigger rework of stacks
 - Open ticket with stack vendor and in touch with ISP for debugging ECN issues
Conclusion

- Large scale longitudinal QUIC web measurements

- Spin bit
 - Optional, yet sees use in the wild
 - How useful is the provided measurement accuracy?

- ECN
 - Mandatory, yet significantly limited on a global scale
 - Many challenges (stack support to faulty network devices)

- Check out papers for more details