
Multicast Extensions for 
QUIC

IETF 118, MBONED
draft-jholland-quic-multicast

Max Franke
Louis Navarre

https://www.ietf.org/archive/id/draft-jholland-quic-multicast-02.html


Outline

● Quick draft recap
● Developments since 114
● Current state of the draft
● Reference implementation(s)
● Next steps



Basic idea

● Use QUIC unicast connections as anchor for multicast 
○ Client declares multicast support and limits (e.g. max rate)
○ Server picks fitting SSM channel(s) and tells client to join them
○ Client attempts join and receives data packets over multicast

● Unicast connection is used for integrity/crypto keys
○ Similar to AMBI
○ Each packet sent over multicast has integrity frame (i.e. checksum) associated with it
○ Multicast packets are encrypted 

● Client ACKs each packet over unicast
○ Server can choose to retransmit lost packets over unicast or (if many clients lost it) over 

multicast again
○ Guarantees reliability

● Multicast only works from server to client
● Multicast packets are also part of the QUIC connection, client does not need 

to differentiate 



Problems this approach solves

● Feasible way to get multicast into browsers via QUIC
● Encryption for packets (though weak as all receivers can decrypt)
● Integrity prevents injection of packets by attackers
● Reliability means application layer does not have to worry about FEC etc. 
● Since it is still just a QUIC connection to the application, support only requires 

enabling a flag
● Pushes large data packets to multicast while only keeping integrity frames 

over unicast, though those can potentially be pushed via multicast as well



Current state of the draft

● Version -03, making continuous progress on fleshing out the draft further
● Added FEC to reduce number of retransmissions

○ https://datatracker.ietf.org/doc/draft-michel-quic-fec/

● Multipath QUIC support
● Two decisions that we are debating:

○ Integrity - Frames vs. signatures
○ Reliability - ACK vs. NACK

https://datatracker.ietf.org/doc/draft-michel-quic-fec/


Forward Erasure Correction recovery 
on the multicast channel

● Could rely on draft-michel-quic-fec-01
○ https://datatracker.ietf.org/doc/draft-michel-quic-fec/

● Each (e.g.) STREAM frame is encapsulated in a source symbol
● The source can generate REPAIR frames on the multicast channel

○ Proactively
○ Based on feedback from the clients

● A single REPAIR frame can recover different losses on distinct clients
● RFC9265

○ Do not hide losses to the congestion control
○ Only send REPAIR frames if allowed by the congestion control algorithm

https://datatracker.ietf.org/doc/draft-michel-quic-fec/


Multipath QUIC to construct the multicast channel

● draft-ietf-quic-multipath to be standardized soon (hopefully)
○ https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/

● For the client, the multicast channel can be viewed as a second path using a 
different key material

● This enables seamless transition between unicast and multicast for the client

● This requires change from the current version of draft-ietf-quic-multipath
○ Need a different crypto material for each path

https://datatracker.ietf.org/doc/draft-ietf-quic-multipath/


What to do with integrity?

● Two possible approaches as mentioned:
○ AMBI style integrity frames
○ Signatures that authenticate per packet or per stream

● Both approaches have advantages/disadvantages in different scenarios
● Do we include just one and if yes which one?
● Do we include both as options and let them be negotiated?

Feedback on/or experiences on this more than welcome.



Reference implementation(s)

● Gave up on Chromium implementation
● Somewhat working python (aioquic) open source implementation

○ Missing some parts, but all the frames, transport parameters etc. are there, sending and 
receiving of multicast packets works

○ Integrity and Acks not implemented (so far)
● Also existing quiche (cloudflare) implementation

○ Does FEC and NACKs
○ No flow of congestion control mechanics (i.e. channel limits etc.)



Next steps

● Make decisions on open issues (ACK and Integrity)
○ Potentially offer choice between AMBI and ALTA style integrity?
○ → Push AMBI drafts forward 

● Move on with implementations, potentially compare the two
● Present new version in QUIC-WG (potentially at 119 or 120)


