

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT Kommunikationsnetze

Efficiency of BIER Multicast in Large Networks

Daniel Merling, Thomas Stüber, Michael Menth

http://kn.inf.uni-tuebingen.de

- Problems with IP multicast (IPMC)
 - State in core nodes (for MC groups)
 - Signalling overhead per MC group
 - Severe signalling load in case of link/node failures due to reconvergence
- IETF's answer: Bit Index Explicit Replication (BIER)
 - Define BIER domain
 - Ingress nodes (BFIRs) add BIER header w/ bitstring
 - Bitstring encodes potential receivers (BFERs)
 - Each bit position corresponds to one BFER
 - Packet delivered if bit is set to 1
 - Core nodes (BFRs) forward and replicate packets according to BIER header and "routing underlay"

- What if more BFERs than bits in bitstring?
 - Use multiple bitstrings and number them w/ set identifiers (SIs)
- What if receivers belong to different SIs?
 - Send one packet per SI w/ receivers
 - Multiple BIER pkts sent per IPMC pkt
 - Overhead compared to IPMC
- How many packets are required from the sender?
 - IPMC: only a single packet
 - Unicast: for every receiver
 - BIER: Number quickly approaches number of SIs with increasing number of receivers

- Links may carry multiple copies of MC packets
- (BFER) set: BFERs assigned to same SI
- Partitioning of BFERs in a BIER domain into sets matters

Sets

Optimization of BFER Sets

- Traffic model
 - Every node sends one MC pkt to all other nodes
- Performance metric
 - Overall number of per-hop packet transmissions
- Methods to create sets
 - Random assignment of nodes to sets
 - Integer Linear Program (ILP) to obtain best theoretic solution
 - Fast heuristic algorithm that covers large networks
- Comparison on small problem instances
 - Heuristic is close to optimum
 - Random assignment worse for many sets

Topology	n	s	Heuristic (%)	Random (%)
Mesh-2	64	2	100.3	132.6
		4	100.7	162.2
	128	2	100.5	133.7
		4	101.5	179.8
Mesh-4	64	2	100.3	115.2
Mesh-6	64	2	100.4	110.6
Mesh-8	64	2	100.3	107.1

- Experiment
 - Bitstring size: 256
 - Networks w/ different topologies and numbers of nodes
 - Optimal sets (w/ heuristic algorithm)
- Results
 - IPMC more efficient than BIER, but BIER more efficient than unicast
 - Efficiency depends on topology
 - Similar results for small receiver sets (not shown)

BIER vs. IPMC

BIER vs. Unicast

What about smaller MC groups?

- Experiment
 - BIER-256
 - Network size 1024 nodes
- Results depend on topology
 - Effectiveness of IPMC and BIER increases w/ MC size
 - Good in sparse topologies
 - Effectiveness of BIER suffers especially for small MC groups

Comparison: Load on Central Links

- Experiment
 - BIER-256
 - Network size 1024 nodes
 - Every node sends pkt to all other nodes
 - Metric: overall #pkts on links
- Complementary cumulative distribution function (CCDF) of link loads
 - Indicates percentage of links w/ load
 > I (pkts)
 - Most loaded links easy to see
- Results depend on topology
 - Unicast: up to 2¹⁴ 2¹⁸ pkts
 - IPMC: up to $2^8 2^{10}$ pkts
 - BIER: up to 2⁹ 2¹¹ pkts
- IPMC and BIER effectively reduce load on most loaded links

What is the best bitstring size?

- Tradeoff
 - Large bitstring: few pkts but large BIER header
 - Small bitstring: many pkts but small BIER header
- Experiment
 - Network size 8192 nodes
 - Pkt size: 500 byte payload + IPMC header + BIER header

- Every node sends pkt to all other nodes
- Metric: overall traffic (GB)
- Results
 - There is an optimum bitstring size
 - Line and ring networks benefit from large bitstrings
 - But BIER-256 bits is good enough for all other network topologies

What about forwarding in failure cases?

- Problem
 - Sets optimized for routing w/o failures
 - What happens to link loads in failure cases?
- Experiment
 - Network size 1024 nodes
 - BIER-256
 - Every node sends pkt to all other nodes
 - Check routing for all single-link failures
 - Metric: maximum load increase on any link
 - Consider only resilient topologies
- Results
 - Load increase on links almost identical to IPMC
 - Ring is an exception

M. Menth: Efficiency of BIER in Large Networks

- Input appreciated for more realistic evalutions
 - What topologies are realistic?
 - What are typical MC group sizes?
- What about small MC groups in large networks?
 - Multiple BIER pkts needed for receivers in different sets
- New kids on the block
 - Explicit tree structures in pkt headers combining BIER and SR ideas
 - <u>https://datatracker.ietf.org/doc/draft-eckert-bier-rbs/</u>
 - <u>https://datatracker.ietf.org/doc/draft-eckert-pim-rts-forwarding/</u>
 - See talk on "P4 Tofino Implementation Experiences with Advanced Stateless Multicast Source Routing" in BIER WG

- ► BIER requires sets for scaling to large networks
 - Send one pkt per set w/ receivers
 - Developed fast heuristic to find sets
- Performance comparison: BIER vs. IPMC and Unicast
 - Packets from sender
 - Overall network load
 - Load on most loaded links
 - Load increase in failure cases
- Bitstring w/ 256 bits is good enough for most network topologies
 - Exceptions: line and ring, small MC groups
- Reference
 - D. Merling, T. Stüber, and M. Menth: Efficiency of BIER Multicast in Large Networks, IEEE Transactions on Network and Service Management (TNSM), vol. N/A, pp. N/A, 2023 (Early Access)
 - https://atlas.cs.uni-tuebingen.de/~menth/papers/Menth21-Sub-5.pdf