Deep Redundancy for the Opus Codec
draft-valin-opus-dred-02

Presenter: Jean-Marc Valin
jmvalin@amazon.com

IETF 118
Deep REDundancy (DRED)

- Goal: make Opus robust to long bursts of packet loss
- Proposal: code large amounts of redundant audio
 - Use DNN to maximize compression
 - Can code 1 second per 20-ms packet (50x)
Forward-Backward Compression

- Don’t re-encode from scratch
- LIFO decoder
- 40-ms “chunks”
 - Updated every 20 ms

![Diagram showing forward and backward encoding and decoding processes with 20 ms frames and initial state (IS).]
Proposed Format

- Use extension code 32 (temporarily 126)
- Offset: position of redundancy in packet (5 bits)
 - 2.5 ms resolution from -40 ms to +37.5 ms
- Quantizer selection (bitrate): 4 bits
- Quantizer slope: 3 bits
- Initial state now entropy-coded (previously fixed rate)
- Latent vectors entropy-coded
- Decode until fewer than 8 bits remain
Normative Aspects

- Balancing act
 - Ensure all implementations are inter-operable
 - Leave as much flexibility *as possible*

- Normative spec for bits-to-feature decoder
 - All decoder weights are frozen (how do we publish them?)
 - Definition of the acoustic features
 - How do we specify neural pitch estimator?

- Encoder is left unspecified
- Minimal constraints on vocoder
Implementation Update

- Improved quality from new vocoder
- Complexity reduced from 10% to 3% CPU for high loss
 - No cost under no loss conditions
- Size of weights down from 17 MB to 4 MB
- DRED-enabled version of libopus at https://gitlab.xiph.org/xiph/opus in opus-ng branch
Open Questions

• Should there be a maximum duration allowed?
 - Technically we could do up to ~10 minutes
 - Proposal: no hard limit, since receiver can ignore the rest

• What are the lowest and highest useful bitrates?
 - Currently support 10 to 100 kb/s for 1 second redundancy
 - Equivalent to 200 b/s to 2 kb/s effective bitrate