QUIC+FEC

Some results for low latency video streaming
Loss recovery in classical transport protocols (SR-ARQ)

Sending “hello, world!”

- Pkt 1 [“hel”]
- Pkt 2 [“lo, “]
- Pkt 3 [“worl”]
- Pkt 4 [“d !”]
- Pkt 5 [“worl”]

> 1*RTT

Loss detection
Retransmission

ACK {1,2,4}

Deliver “hello, “ to the application
Store “d !” in receive buffer
Deliver “world !” to the application
Forward Erasure Correction in the transport

Sending “hello, world!”

Pkt 1 [“hel”]
Pkt 2 [“lo, “]
Pkt 3 [“worl”]
Pkt 4 [“d !”]
Pkt 5 [“hel” ⊕ “lo, “ ⊕ “worl” ⊕ “d !”]

Pkt 1, 2, 3, 4 contain source symbols
Pkt 5 contains a repair symbol

Reconstruct “worl”
Deliver “hello, world !” to the application
Forward Erasure Correction for QUIC loss recovery

Abstract

This document lays down the QUIC protocol design considerations needed for QUIC to apply Forward Erasure Correction on the data sent through the network.
QUIRL: implementing draft-michel-quic-fec-01

Based on Cloudflare’s quiche implementation.

- quiche is a production-ready implementation
- it is deployed on Cloudflare’s edge servers
- used by the DNS resolver on recent Android versions
- can be integrated with curl for HTTP/3 queries
Using QUIRL for FFmpeg/GStreamer

- Every **RTP packet** is placed into a dedicated **QUIC stream**
 - large RTP packets cannot fit in DATAGRAM frames
- Repair symbols are sent regularly to protect one or more video frames
- We want to minimize frames **lateness** to improve video fidelity (SSIM)
Replaying drone videos over Starlink

1000 experiments performed from a laptop in Belgium to a Cloudlab server (US)

- Using 5 different playback buffer values

Average SSIM per video over Starlink

![Graph showing average SSIM per video over Starlink with different buffer sizes for RTP, QUIC, and QUIRL protocols.](image)
Ratio of perfect frames (SSIM=1) over Starlink

The graph shows the ratio of perfect frames over different GStreamer playback buffer times (in ms). The buffer sizes range from 50 to 500 ms. The boxes represent the interquartile range of the ratio, with the whiskers indicating the range of the data excluding outliers. The data is compared across different protocols: RTP, QUIC, and QUIRL.
Summary

All our work and code will soon be open source. More details can be found in:

- My thesis: https://ncs.uclouvain.be/phd/2023/10/12/michel-phd.html
- The QUIRL paper (soon)

If your use-cases may benefit from QUIC-FEC, here’s how we could start:

- Discuss on slack and the mailing list
- Send us an e-mail to collaborate: francois.michel@uclouvain.be
- Implementing draft-michel-quic-fec
- Please, do it with us, not on your own! :-(