
Mounting YANG-Defined
Information from Remote

Datastores
draft-clemm-netmod-peermount-02

Alexander Clemm (Futurewei)

Eric Voit (Cisco)

Aihua Guo (Futurewei)

Ignacio Dominguez (Telefonica)

draft-clemm-netmod-peermount@ietf.org

IETF118, Prague, Czech Republic
November 2024

mailto:draft-clemm-netmod-peermount@ietf.org

Motivation
• YANG datastores provide local

management data with a device-
level scope

• Increasingly, use cases appear
that require more holistic,
network-wide views

• Topology, Digital Map, Network
Inventory, Network Digital Twin

• Required data may become
increasingly redundant (e.g. status,
aspects of configuration)

• Provided as part of a management
hierarchy (e.g. device – controller –
orchestrator)

Orchestrator

ControllerControllerController

device scope

network scope

YANG

YANG

YANGYANG

YANG

YANG

YANG

YANG

YANG
YANG’

YANG’

YANG’

Motivation (contd.)
• Issues

• Need redundant model definitions for device and for network context
• Risk of model misalignments at controller vs at network element

(e.g. deviations, different speeds at which models become available, …)
• Need for redundant augmentations

• Separate implementation and instrumentation at device and controller level
• Synchronization of redundant data
• Operational inefficiencies (e.g. redundant manual population)
• In case of data that is not redundantly captured: need for multiple management associations

• Potential layer violations in management hierarchies
• Mgmt. communication scaling issues

• Needed: a federated datastore that provides a holistic view of a network
• Federated data resides across nodes that authoritatively “own” their data
• Accessed by clients as one conceptual datastore
• Use to provide additional configuration & status information of nodes in network context

eg. for Topology, Inventory, Digital Twin

4

Mount Concept – Peer Mount
Concept:

• Refer to data nodes / subtrees in remote datastores

• Remote data nodes visible as part of local data store

• Avoid need for data replication and orchestration
(caching considerations apply)

• Authority remains with original owner

• Analogies with mountpoints in a distributed file system
(YANG data nodes vs files/directories)

Why:

• Federated datastore - treat network as a system

• “Borderless Agents”, “Network-as-a-System”

• “Live” network topology, network inventory, digital map

e.g. controller e.g. device

5

Mount Concept – Peer Mount

e.g. controller e.g. device

Concept:

• Refer to data nodes / subtrees in remote datastores

• Remote data nodes visible as part of local data store

• Avoid need for data replication and orchestration
(caching considerations apply)

• Authority remains with original owner

• Analogies with mountpoints in a distributed file system
(YANG data nodes vs files/directories)

Why:

• Federated datastore - treat network as a system

• “Borderless Agents”, “Network-as-a-System”

• “Live” network topology, network inventory, digital map

6

Note: do not confuse with schema mount (RFC 8528)

• Mount instances of datastore subtrees in remote servers vs.

extensions of model to be instantiated locally

Note: do not confuse with schema mount (RFC 8528)

• Mount instances of datastore subtrees in remote servers vs.

extensions of model to be instantiated locally

Mount Concept – Peer Mount

e.g. controller e.g. device

Concept:

• Refer to data nodes / subtrees in remote datastores

• Remote data nodes visible as part of local data store

• Avoid need for data replication and orchestration
(caching considerations apply)

• Authority remains with original owner

• Analogies with mountpoints in a distributed file system
(YANG data nodes vs files/directories)

Why:

• Federated datastore - treat network as a system

• “Borderless Agents”, “Network-as-a-System”

• “Live” network topology, network inventory, digital map

7

Usage example
rw controller-network

 +-- rw network-elements

 +-- rw network-element [element-id]

 +-- rw element-id

 +-- rw element-address

 | +-- ...

 +-- M interfaces

...

 list network-element {

 key "element-id";

 leaf element-id {

 type element-ID;

 }

 container element-address {

 ...

 }

 pmt:mountpoint "interfaces" {

 pmt:target "./element-address";

 pmt:subtree "/if:interfaces";

 }

 }

...

<network-elements>

 <network-element>

 <element-id>NE1</element-id>

 <element-address> </element-address>

 <interfaces>

 <if:interface>

 <if:name>fastethernet-1/0</if:name>

 <if:type>ethernetCsmacd</if:type>

 <if:location>1/0</if:location> ...

 </if:interface> ...

 </network-element>

 <network-element>

 <element-id>NE2</element-id> ...

 <interfaces>

 <if:interface> ...
Instance information

Module

structure

Mountpoint declaration

• YANG module defines peer mount extensions + data
model for mountpoint management

• YANG extensions:

Mountpoint: Defined under a containing data node
(e.g. container, list)

Target: References data node that identifies remote
server

Subtree: Defines root of remote subtree to be attached

8

Example uses
• Provide network-wide view of device configuration aspects (in an inventory, in a Digital Twin, ...)

For example, system management settings, data on hardware/firmware, location information, ...

• Provide network-wide status information (in a topology, in a digital map, ...)

For example, power statistics, link status, interface statistics

• Design pattern:

Define Mount Point for additional information in network element list elements

Mount subtrees with the desired information

module: my-new-network-inventory

 +--rw nw:networks

 +--rw nw:network* [nw:network-id]

 ...

 +--rw nw:node* [node-id]

 +--rw nw:node-id node-id

 +--rw name

 +--M node-hardware -->/hardware/component[name]

 ...

from ietf-network-topology per RFC 8345

augmentation

(here: hw component subtree

from ietf-hardware per RFC 8348)

9

Dealing with heterogeneity & legacy

module: my-new-network-inventory

 +--rw nw:networks

 +--rw nw:network* [nw:network-id]

 ...

 +--rw nw:node* [node-id]

 +--rw nw:node-id node-id

 +--(hw-data-origin)

 +--:(data to be mounted supported by remote system)

 | +--rw name

 | +--M node-hardware -->/hardware/component[name]

 +--:(controller-populated)

 +--ro component* [uuid]

 +--ro uuid yang:uuid

 +--ro location

 ...

• Not every remote device may support / provide the information that is to be mounted

• In those situations, a controller may still need to populate the information manually
(or mount alternative data)

• This can be addressed through design patterns that accommodate different options / choices

10

Datastore mountpoint YANG module
• YANG Extensions:

mountpoint

target

subtree

• Declares a mountpoint under a containing data node

(container, list, case)

• Two parameters: target and subtree (separate extension)

• Circular mounts prohibited – check on instantiation

• Declares a mountpoint under a containing data node

(container, list, case)

• Two parameters: target and subtree (separate extension)

• Circular mounts prohibited – check on instantiation

• Identifies the subtree in the target system that is being mounted

• Generally, a container (but could be another data node)

• Identifies the subtree in the target system that is being mounted

• Generally, a container (but could be another data node)

• Identifies the target system that is authoritative owner of the data

(e.g. IP address, host name, URI)

• Generally, maintained as part of the same datastore (“inventory”)

• Identifies the target system that is authoritative owner of the data

(e.g. IP address, host name, URI)

• Generally, maintained as part of the same datastore (“inventory”)

11

Datastore mountpoint YANG module
• YANG Extensions:

mountpoint

target

subtree

• Mountpoint management:

mount status

caching policies

communication / retry policies

• RPCs:

mount

unmount
• Only needed for explicit / on-demand instantiation of mountpoints

(vs by system operation)

• Might remove

• Only needed for explicit / on-demand instantiation of mountpoints

(vs by system operation)

• Might remove

• Possibly include mount status as metadata on data retrieval• Possibly include mount status as metadata on data retrieval

12

Additional considerations
• Mount cascades supported (but circular mounting is prohibited)

• Supported operations: data retrieval only (at this point), other operations out of scope:

Configuration support (would incur transactional ramifications)

Notifications (cascading subscriptions conceivable but may lead to event replication)

YANG-Push (support for cascading subscriptions is conceivable when need arises)

• Authorization

Target system is the authoritative owner, NACM applies – mount client “just another application”

• Caching

Conceivable as an implementation optimization – cache datanodes when #reads>>#updates

Implementations could leverage YANG-Push – subscribe to updates from mounted subtree in mount server
(distinguish from YANG-Push subscription to the YANG client)

• Mount & connection granularity

Can mount multiple (small) subtrees from the same target system

Implementations should be smart enough to maintain only a single management association

• Datastore qualification and NMDA TBD

13

Final remarks

• A historical remark

An earlier proposal for Peer-Mount was made in 2013 but arguably ahead of its time

Included 2 mount variants: alias mount for alternative data tree in addition to peer mount

Implementation as part of Open Daylight’s MD-SAL (SDN Controller)

No IETF interest in data models above device level at the time, so did not gain traction

• Next steps

Time may be ripe now as network-wide models in IETF scope (e.g. network inventory, Digital Twin)

This draft revives the earlier proposal with modification and simplifications in view of new context

Is there interest in taking up this this work? Is there interest in taking up this this work?

Questions, comments, suggestions? Please reach out to us Thank you!

14

Backup

15

Mountpoint management
rw mount-server-mgmt

 +-- rw mountpoints

 | +-- rw mountpoint [mountpoint-id]

 | +-- rw mountpoint-id string

 | +-- rw mount-target

 | | +--: (IP)

 | | | +-- rw target-ip yang:ip-address

 | | +--: (URI)

 | | | +-- rw uri yang:uri

 | | +--: (host-name)

 | | | +-- rw hostname yang:host

 | | +-- (node-ID)

 | | | +-- rw node-info-ref pmt:subtree-ref

 | | +-- (other)

 | | +-- rw opaque-target-id string

 | +-- rw subtree-ref pmt:subtree-ref

 | +-- ro mountpoint-origin enumeration

 | +-- ro mount-status pmt:mount-status

 | +-- rw manual-mount? empty

 | +-- rw retry-timer? uint16

 | +-- rw number-of-retries? uint8

 +-- rw global-mount-policies

 +-- rw manual-mount? empty

 +-- rw retry-time? uint16

 +-- rw number-of-retries? uint8

+ RPCs for manual mount, unmount

• Mountpoints can be system-administered

Applications & users will not be exposed to this

Manage caching policies, maintain mount
status

• Instantiation of mountpoints

Via system operation (automatic instantiation)

Via mount / unmount RPC (explicit
instantiation)

• Either case, where mountpoints can be
instantiated must be declared as part of the
model

Cannot mount in arbitrary locations

Retain ability to validate instance documents

16

Comparison Peer-Mount – Schema Mount
Peer-Mount Schema Mount

Provide visibility - create access path to existing

instances hosted in a remote server

Reuse existing definitions to create new models that

are then locally instantiated and locally hosted

Analogy: soft link*
(*with some caveats)

Analogy: grouping/uses (or augments) “after the fact”

Reference mount target has authoritative copy Mount Point has authoritative copy

No validation of data at or by mountpoint; validation of

data is responsibility of authoritative data owner

Validation of data at mount point

Mount point provides visibility to data already

instantiated elsewhere (no redundant data)

Mountpoint instantiates new data

The same target mounted in different mountpoints

does not result in additional data instances

Same target schema mounted in different mountpoints

results in separate unrelated data instances

Commonality between Peer-Mount and Schema-Mount: YANG mountpoint extension

YANG extension introduced to define mountpoints

Differences in terms of additional parameters (to identify target node and target system)

	Slide 1: Mounting YANG-Defined Information from Remote Datastores draft-clemm-netmod-peermount-02
	Slide 2: Motivation
	Slide 3: Motivation (contd.)
	Slide 4: Mount Concept – Peer Mount
	Slide 5: Mount Concept – Peer Mount
	Slide 6: Mount Concept – Peer Mount
	Slide 7: Usage example
	Slide 8: Example uses
	Slide 9: Dealing with heterogeneity & legacy
	Slide 10: Datastore mountpoint YANG module
	Slide 11: Datastore mountpoint YANG module
	Slide 12: Additional considerations
	Slide 13: Final remarks
	Slide 14: Backup
	Slide 15: Mountpoint management
	Slide 16: Comparison Peer-Mount – Schema Mount

