AI-Based Distributed Processing Automation in Digital Twin Network

draft-oh-nmrg-ai-adp-01

S-B. Oh (KSA), Y-G. Hong (Daejeon Univ.), J-S. Youn (DONG-EUI Univ),
HJ.Lee (ETRI), H-K Kahng (Korea Univ.)

nmrg Meeting@IETF 118 – Prague November 10. 2023
History and status

- 00 : draft-oh-nmrg-ai-adp-00 (July. 2023)
 - Title : Network management by automating distributed processing based on artificial intelligence
- 01 : draft-oh-nmrg-ai-adp-01 (Oct. 2023)
 - 1st presentation
 - Title : AI-Based Distributed Processing Automation in Digital Twin Network (To reflect the discussion result of IETF117 meeting)
Motivations

- Change of network complexity
 - High number of devices and data increase the network complexity
 - The possibility of malfunction or errors increases when network administrators/operators manage the network manually

- Adaptation to dynamically change network environment

- Maximizing the utilization of network resources
 - The increasing necessity of optimal resource allocation based on the characteristics of nodes providing network functions arises
Intention of this draft

• To efficiently adapt to the dynamically changing network environment
 • Find optimal configuration of systems using AI and DTN
 • Find optimal task distributed processing using AI and DTN
 • Requirements of task distributed processing
 • Propose automating distributed processing with DTN and AI
Conventional Task Distributed Processing Techniques and Problems

- Task Distributed Processing Technique
 • Distribute computational tasks among multiple nodes in a network

- Conventional techniques in task Distributed Processing
 • Load balancing
 • Parallel processing
 • Pipelining

- Challenges and problems in Task Distributed Processing
 • Prevention of Single network node overload
 • Prevention of overall process delays caused by bottleneck
 • Prevention of entire process disruption caused by network node failure
Requirements of Task Distributed Processing

- Scalability
 - The ability to add or remove nodes from the network and distribute tasks efficiently and effectively, without compromising performance or functionality.

- Fault tolerance
 - The ability to handle node failures and network outages without disrupting overall system performance or task completion.

- Load balancing
 - The ability to distribute tasks evenly across all nodes, ensuring that no single node becomes overwhelmed or underutilized.

- Task coordination
 - The ability to manage task dependencies and ensure that tasks are completed in the correct order and on time

- Resource management
 - The ability to manage system resources such as memory, storage, and processing power effectively, to optimize task completion and minimize delays or errors.

- Security
 - The ability to ensure the integrity and confidentiality of data and tasks and protect against unauthorized access or tampering.
Automating Distributed Processing with Digital Twin and AI

- DT and AI technology for Real-time Task Distribution:
 • The real-time updates from digital twin network enable continuous, optimal task distribution.
 • AI algorithms analyze network conditions and user demand in real-time.
 • Enables dynamic task distribution and processing based on current network conditions.

- Automatic Task Rerouting:
 • The system automatically reroutes tasks to less congested network areas.
 • Reduces delays and enhances overall performance.

- AI-driven Task Allocation:
 • AI algorithms, based on digital twin data, can automatically optimize network operations.
 • Tasks are distributed to nodes based on factors like processing power and available memory.

- Data that AI models can utilize within the digital twin network
 • Network data
 • Task and task characteristic data
 • Performance and resource data
 • Network configuration and device data
An example of AI system for Task Distributed Processing

- **Input layer**
 - Size of task (m)
 - Number of components (n)
 - Division resolution (γ)
 - Network status (k)
 - Available computing resources (r)
 - Distance (λ)

- **Hidden layer**
 - Two layers for each DNN model
 - Each hidden layer consists of 128 neurons

- **Output layer**
 - Optimal offloading (o^*)
 - Optimal partitioning (z^*)
Thanks!!

Questions & Comments