AI-Based Distributed Processing Automation in Digital Twin Network

draft-oh-nmrg-ai-adp-01

S-B. Oh (KSA), <u>Y-G. Hong</u> (Daejeon Univ.), J-S. Youn (DONG-EUI Univ), HJ.Lee (ETRI), H-K Kahng (Korea Univ.)

nmrg Meeting@IETF 118 – Prague November 10. 2023

History and status

- 00 : draft-oh-nmrg-ai-adp-00 (July. 2023)
 - Title : Network management by automating distributed processing based on artificial intelligence
- 01 : draft-oh-nmrg-ai-adp-01 (Oct. 2023)
 - 1st presentation
 - Title : AI-Based Distributed Processing Automation in Digital Twin Network (To reflect the discussion result of IETF117 meeting)

Motivations

- Change of network complexity
 - High number of devices and data increate the network complexity
 - The possibility of malfunction or errors increases when network administrators/operators manage the network manually
- Adaptation to dynamically change network environment
- Maximizing the utilization of network resources
 - The increasing necessity of optimal resource allocation based on the characteristics of nodes providing network functions arises

Intention of this draft

- To efficiently adapt to the dynamically changing network environment
 - Find optimal configuration of systems using AI and DTN
 - Find optimal task distributed processing using AI and DTN
 - Requirements of task distributed processing
 - Propose automating distributed processing with DTN and AI

Conventional Task Distributed Processing Techniques and Problems

- Task Distributed Processing Technique
 - Distribute computational tasks among multiple nodes in a network
- Conventional techniques in task Distributed Processing
 - Load balancing
 - Parallel processing
 - Pipelining
- Challenges and problems in Task Distributed Processing
 - Prevention of Single network node overload
 - Prevention of overall process delays caused by bottleneck
 - Prevention of entire process disruption caused by network node failure

Requirements of Task Distributed Processing

- Scalability
 - The ability to add or remove nodes from the network and distribute tasks efficiently and effectively, without compromising performance or functionality.
- Fault tolerance
 - The ability to handle node failures and network outages without disrupting overall system performance or task completion.
- Load balancing
 - The ability to distribute tasks evenly across all nodes, ensuring that no single node becomes overwhelmed or underutilized.
- Task coordination
 - The ability to manage task dependencies and ensure that tasks are completed in the correct order and on time
- Resource management
 - The ability to manage system resources such as memory, storage, and processing power effectively, to optimize task completion and minimize delays or errors.
- Security
 - The ability to ensure the integrity and confidentiality of data and tasks and protect against unauthorized access or tampering.

Automating Distributed Processing with Digital Twin and AI

- DT and AI technology for Real-time Task Distribution:
 - The real-time updates from digital twin network enable continuous, optimal task distribution.
 - Al algorithms analyze network conditions and user demand in real-time.
 - Enables dynamic task distribution and processing based on current network conditions.
- Automatic Task Rerouting:
 - The system automatically reroutes tasks to less congested network areas.
 - Reduces delays and enhances overall performance.
- Al-driven Task Allocation:
 - Al algorithms, based on digital twin data, can automatically optimize network operations.
 - Tasks are distributed to nodes based on factors like processing power and available memory.
- Data that AI models can utilize within the digital twin network
 - Network data
 - Task and task characteristic data
 - Performance and resource data
 - Network configuration and device data

An example of AI system for Task Distributed Processing

Two layers for each

DNN model

neurons

- Each hidden layer

consists of 128

- Input layer
 - Size of task(m)
 - Number of components(*n*)
 - Division resolution(γ)
 - Network status(k)
 - Available computing resources(r)
 - Distance(λ)

- Output layer
 - Optimal offloading(op*)
 - Optimal partitioning(z^{*})

Thanks!!

Questions & Comments