Identity Chaining Across Trust Domains

IETF 118 OAuth Working Group Meeting

Arndt Schwenkschuster (Microsoft)
Pieter Kasselman (Microsoft)
Kelley Burgin, (MITRE)
Mike Jenkins (NSA-CSS)
Brian Campbell (Ping)
Agenda

- The challenge of Identity Chaining
- A (proposed) approach
- What’s in the draft
- Next Steps
Why Identity Chaining Across Trust Domains

Things the “Bar” service needs to know
- Who was the Resource Owner?
- What authorization did they grant?
- What other entities were involved?
- What authorization did they have?
Why Identity Chaining Across Trust Domains

Image Courtesy Justin Richer (justin@bspk.io)
Why Identity Chaining Across Trust Domains

Different domain, same questions
- Who was the Resource Owner?
- What authorization did they grant?
- What other entities were involved?
- What authorization did they have?

Image Courtesy Justin Richer (justin@bspk.io)
Why Identity Chaining Across Trust Domains

Image Courtesy Justin Richer (justin@bspk.io)
Proposal Concepts
Getting an Authorization Grant for another Trust Domain

1. Client in Domain 1 exchanges a token with the AS in Trust Domain 1 to get an authorization grant for the AS in Trust Domain 2

2. Client use the authorization grant with the AS in Trust Domain 2 to get an access token

3. Client presents the access token to the Resource server in Trust Domain 2

Token Exchange (RFC 8693)

Assertion Framework (RFC 7521)
Generic Cross-Domain Identity Chaining

1. Token Exchange – Obtain Authorization Grant
2. Assertion Framework – Get Access Token
3. Present Access Token
Resource Server as Client

1. **Token Exchange – Obtain Authorization Grant**
 - **Authorization Server Domain 1**
 - **Gateway**
 - **Client 2**

2. **Assertion Framework – Get Access Token**
 - **Authorization Server Domain 2**
 - **Gateway**
 - **Baz**

3. **Present Access Token**
 - **Gateway**
 - **Baz**
 - **Qux**
Authorization Server as Client

1. Authorization Server Domain 1 → Client 2
2. Token Exchange – Obtain Authorization Grant
3. Token Exchange – Request access token for domain 2

Trust Domain 1

Trust Domain 2

Client 2

Assertion Framework – Get Access Token

Authorization Server Domain 2

Gateway

foo

Bar

Gateway

Baz

Qux
What’s in the draft

https://datatracker.ietf.org/doc/draft-identity-chaining/
Section 2.2
Generic Cross-Domain Identity Chaining
Appendix A.1
Resource Server acting as Client

Figure 6: Resource server acting as client
Appendix A.2
Authorization Server acting as Client

Figure 7: Authorization server acting as client
2.4. Token Exchange

The client performs token exchange as defined in [RFC8693] with the authorization server for its own domain (e.g., Domain A) in order to obtain an authorization grant that can be used with the authorization server of a different domain (e.g., Domain B) as specified in section 1.3 of [RFC6749].

2.4.1. Request

The parameters described in section 2.1 of [RFC8693] apply here with the following restrictions:

requested_token_type

OPTIONAL according to [RFC8693]. In the context of this specification this parameter SHOULD NOT be used. See Authorization grant type (Section 2.4.3).

Open Question: Should this be restricted to JWT?
2.5. Authorization Grant

The client presents the authorization grant it received from the authorization server in its own domain and presents it to the authorization server in the domain of the resource server it wants to access as defined in the "Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants" [RFC7521].

2.5.1. Request

If the authorization grant is in the form of a JWT bearer token, the client SHOULD use the "JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants" as defined in [RFC7523]. Otherwise, the client SHOULD request an access token using the "Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants" as defined in [RFC7521] (Section 4.1). For the purpose of this specification the following descriptions apply:

grant_type
 REQUIRED. In context of this specification clients SHOULD use the type identifier returned by the token exchange (issued_token_type response). See authorization grant type (Section 2.4.3) for more details.

assertion
 REQUIRED. Authorization grant returned by the token exchange (access_token response).

scope
 OPTIONAL.

The client MAY indicate the audience it is trying to access through the scope parameter or the resource parameter defined in [RFC8707].
2.6. Claims transcription

Authorization servers MAY transcribe claims when either producing authorization grants in the token exchange flow or access tokens in the assertion flow.

1. **Transcribing the subject identifier**: Subject identifier can differ between the parties involved. For instance: A user is known at domain A by "johndoe@a.org" but in domain B by "doe.john@b.org". The mapping from one identifier to the other MAY either happen in the token exchange step and the updated identifier is reflected in returned authorization grant or in the assertion step where the updated identifier would be reflected in the access token. To support this both authorization servers MAY add, change or remove claims as described above.

2. **Selective disclosure**: Authorization servers MAY remove or hide certain claims due to privacy requirements or reduced trust towards the targeting trust domain. To hide and enclose claims [I-D.ietf-oauth-selective-disclosure-jwt] MAY be used.

3. **Controlling scope**: Clients MAY use the scope parameter to control transcribed claims (e.g. downscoping). Authorization Servers SHOULD verify that requested scopes are not higher privileged than the scopes of presented subject_token.

4. **Including authorization grant claims**: The authorization server performing the assertion flow MAY leverage claims from the presented authorization grant and include them in the returned access token. The populated claims SHOULD be namespaced or validated to prevent the injection of invalid claims.

Open Question:
Should we define how the claims are transcribed?
Changes since IETF 117

- Update docname to draft-schwenkschuster-oauth-identity-chaining-00
- Editorial: Remove repetitive text
- Replace cURL commands with "on-the-wire" examples
- Add correct reference for RFC 7523
- Clarify requirements for "aud" claim
- Update Acknowledgements
- Correct/Update Authorization Server Discovery
Next steps
Open Issues

Scope

• Consider limiting token formats to JWT
• How to transcribe claims

https://github.com/arndt-s/ietf-identity-chaining/issues
Next Steps

• Interest in the WG to pursue this work?
Questions?