
Oauth (Token) Status List

Tobias Looker, Paul Bastian, Christian Bormann

A simple and scalable credential revocation/status mechanism
[Formerly known as JWT CWT Status List]

A Refresher - The Problem

How to enable the issuer of a token (e.g CWT or JWT) to communicate dynamic status

information about a token after it is issued and before it expires.

Example - An SD-JWT Verifiable Credential where the Issuer would like to communicate whether the
credential is revoked or not.

#
#
#
#

Key Requirements

● Scalable: Must scale to millions (100’s millions) of credentials

● Issuer Herd Privacy: Able to protect Relying Parties and Holders/Users from Issuer

knowing where a given token is being verified/used

● Work with common formats: Support JOSE/COSE based tokens/credentials, i.e. can be

used natively for ISO mdoc and IETF SD-JWT-VC

● Caching Support: Enable verifying parties to cache status lists for offline verification

#
#
#
#

Proposed Solution

● Byte array based status list (for large amounts of credentials)

● Status is indicated by the value of a specific index in the status list

● Status List is Gzip-compressed and the outcome base64 encoded

● Signed and delivered as JWT/CWT

#
#
#
#

Example: Referenced Token
 {

 "alg": "ES256",

 "kid": "11"

 }

 .

 {

 "iss": "https://example.com",

 … //other claims

 "status": {

 "uri": "https://example.com/statuslists/1",

 "idx": 5

 }

 }

Index in the status list
URI of the status list token

#
#
#
#

Example: Status List JWT
{

 "alg": "ES256",

 "kid": "12",

 "typ": "statuslist+jwt"

}

.

{

 "exp": 1687517770,

 "iat": 1686912970,

 "iss": "https://example.com",

 … //other claims

 "status_list": {

 "bits": 1,

 "lst": "H4sIAMo_jGQC_zvp8hMAZLRLMQMAAAA"

 },

 "sub": "https://example.com/statuslists/1"

}

eyJhbGciOiJFUzI1NiIsImtpZCI6IjEyIiwidHlwIjoic3RhdHV

zbGlzdCtqd3QifQ.eyJleHAiOjE2ODc1MTc3NzAsImlhdCI6MTY

4NjkxMjk3MCwiaXNzIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSIsIn

N0YXR1c19saXN0Ijp7ImJpdHMiOjIsImxzdCI6Ikg0c0lBTW9fa

kdRQ196dnA4aE1BWkxSTE1RTUFBQUEifSwic3ViIjoiaHR0cHM6

Ly9leGFtcGxlLmNvbS9zdGF0dXNsaXN0cy8xIn0.8uaUXshaJdG

WGjvwPwaa2Gtt0M7-M7dGO9rXaz3x99LCdG5tKb-ARL1ezqguLT

s63VeudYWqpdg4HpN-D2hOkg

#
#
#
#

Example: How it fits together

 "sub": "https://example.com/statuslists/1"

 "status_list": {

 "bits": 1,

 "lst": "H4sIAMo_jGQC_zvp8hMAZLRLMQMAAAA"

 }

 "status": {

 "idx": 5

 "uri": "https://example.com/statuslists/1",

 }

1 0 0 1 0 1 0 0 0 1 0 0

0x0 = VALID
0x1 = INVALID

Deflate gzip

#
#
#
#

Further Features

● Status Type can be extended to represent more than 1 bit, i.e. “valid”/”invalid”
○ e.g. for suspension
○ Status Types are defined by the specification, extensible by IANA registry

● Fetching protocol over HTTP GET
○ Additional caching guidance by the Status List Provider by using HTTP Cache Control
○ Using Media Types (e.g. application/status-list+jwt) to differentiate between status list formats

#
#
#
#

JWT Status List Example sizes

List Size (total
number of entries)

0.1% revoked 1% revoked 2% revoked 5% revoked 10% revoked

10.000 433 bytes 660 bytes 868 bytes 1.258 bytes 1.717 bytes

100.000 806 bytes 2.913 bytes 4.796 bytes 9.616 bytes 12.908 bytes

1.000.000 4.241 bytes 25.302 bytes 42.550 bytes 80.441 bytes 123.185 bytes

10.000.000 39.146 bytes 246.938 bytes 417.993 bytes 794.874 bytes 1.225.229 bytes

● Average revocation rate on the web: 1,2 %

● Average Status List size: depends on several factors
○ Number of entities managed by the Issuer
○ Usage of batch credential issuance
○ Usage of decoy entries

● These sizes can be reduced by additional HTTP compression due to base64 encoding (~25%)

#
#
#
#

Progress Update

- Working Group Adoption of draft

- Changed draft title

- Defined the HTTP protocol for status list retrieval

- IANA registrations for Media Types and JWT claims

- Privacy Considerations

- Updated Terminology Verifier -> Relying Party

- Gathered some early implementation detail on the approaches performance from a representation

size efficiency perspective

#
#
#
#

Work in Progress
● Option for unsigned Status List over HTTP endpoint

● Switching compression to Zlib (suited better, no dynamic headers)

● Discussion on the Draft Title
○ OAuth Status List (current)
○ OAuth Token Status List
○ Token Status List
○ Bitarray Status List

● Design considerations for introduction

● CWT representations

● Security and implementation considerations

● Testing the current specification with implementations

● Discussion on more privacy-preserving options

● Comparison to/Lessons learned from existing revocation approaches

#
#
#
#

Questions?

#
#
#
#

Links

● Current Editors Copy -> https://datatracker.ietf.org/doc/draft-looker-oauth-jwt-cwt-status-list

● Git Repository -> https://github.com/vcstuff/draft-looker-oauth-jwt-cwt-status-list
○ Please use Github Issues for feedback

#
#
#
#
https://datatracker.ietf.org/doc/draft-looker-oauth-jwt-cwt-status-list
https://github.com/vcstuff/draft-looker-oauth-jwt-cwt-status-list

Backup

#
#
#
#

Security Considerations

● Correct decoding, parsing and validation of the encoded status list: risk to fetch erroneous status

data
○ Easy to implement algorithms
○ Test vectors for implementers

● Cached and stale status lists, Verifier should be aware if they fetch the up-to-date data
○ Status List contains expiration date
○ HTTP caching mechanisms used in the retrieval protocol (next version)

● Status list only provides the up-to date/latest status, no historical data
○ May be provided by the underlying hosting architecture with additional API if necessary
○ Historical information is not necessary for most use-cases

#
#
#
#

Privacy Considerations
● Herd Privacy

○ Privacy depends on the size of the status list
○ More entities means better herd privacy but larger file size and worse scalability

● Profiling/Tracking: Verifiers may regularly fetch the status list to create a profile
○ Less number of Status Types prevents additional information leakage
○ reissue/refresh tokens regularly

● Malicious Issuers: issuers may generate unique status lists per credential
○ Theoretically possible, observable by Verifiers through metadata

#
#
#
#

Implementation/Privacy Considerations
● Correlation Risks

○ Issuers should avoid using sequential indices, instead use randomized indices over multiple status lists
○ Issuers are recommended to use decoy/dead entries that are never assigned and other obfuscation mechanisms
○ Issuers using batch credential issuance should use individual indizes per credential

■ Batch revocation might reveal some correlation of presented credentials

● Third Party Hosting/CDN
○ Improves availability and scalability as Status List can be provided by third parties
○ Privacy may be increased if hosting of the status list is done by a third party instead of the issuer as it reduces

tracking possibilities for the issuer but adds another party

#
#
#
#

Other approaches?

● Accumulator/ZKP-based approaches

● OCSP/Validity credentials

● X.509 Certificate Revocation Lists

#
#
#
#

Accumulator/ZKP-based approaches
● Revocation scheme based on cryptographic accumulators (usually RSA or EC)

● provides the best privacy properties (no tracking, one time proof of non-revocation)

● has a bad scalability
○ Hyperledger Indy revocation registries were capped to 32768 entities

● requires additional effort for the wallet
○ fetch accumulator and delta updates from the registry
○ complicated cryptographic computation (witness update) to perform proof to the Relying Party

● Not standardized

● Some of the better scaling variants are based on pairing-based cryptography
○ Not well tested, not ready for production

→ This approach offers great potential for privacy but is still technically immature

#
#
#
#

OCSP Stapling/Validity credentials
● RFC 2560/6960 - ASN.1-based status information is fetched by the Holder from the Issuer directly

and “stapled” to the credential

● OCSP Stapling/Validity credentials reveal usage information directly to the Issuer
○ Loss of privacy towards the issuer
○ More privacy towards Relying Party as they are not able to re-check the status

● Has significant challenges for scalability
○ Overall system complexity scales with the number of holders → more Holders than Relying Parties expected
○ Validity Responses by the Issuer must be computed dynamically → high cost

● Requires less strict freshness to scale better (holders don’t have to re-request status too often)
○ Relying Parties cannot directly communicate their requirements for freshness

● Very little existing work how this concept would apply to the VC ecosystem (validity credentials)

→ This approach is doable but adds system complexity for Issuers and Holders and requires further

adoption to VCs

#
#
#
#

X.509 Certificate Revocation Lists
● RFC 5280 - ASN.1-based CRL for X.509

certificates

● In production, but has scalability issues
○ This is why browsers are using curated

CRLSets/Bloom filters

● Similar privacy attributes as status list (also

provides herd privacy for lookups)

● Supports historic data

● No good technological fit to formats chosen

for PID/EAA

→ This approach is similar to JWT/CWT Status List but conveys more information resulting in larger payloads

#
#
#
#

Comparison between Status List and CRL
IETF JWT/CWT Status List IETF CRL

Technological fit SD-JWT / mdoc (JSON/CBOR) X.509 (ASN.1)

size grows with revocation rate grows with revocation rate and time

data only includes up-to-date data includes up-to-date and historic data

Data
representation

Gzip-compressed byte array ASN.1-Sequence containing Serial
number and timestamp

Example size for
n=100.000 p=0.01

2,9 kB (compressible by ~25%) 35 kB (compressible by ~35%)

#
#
#
#

