Oauth (Token) Status List

A simple and scalable credential revocation/status mechanism [Formerly known as JWT CWT Status List]

Tobias Looker, Paul Bastian, Christian Bormann

A Refresher - The Problem

How to enable the issuer of a token (e.g CWT or JWT) to communicate dynamic status information about a token after it is issued and before it expires.

Example - An SD-JWT Verifiable Credential where the Issuer would like to communicate whether the credential is revoked or not.

Key Requirements

- Scalable: Must scale to millions (100's millions) of credentials
- Issuer Herd Privacy: Able to protect Relying Parties and Holders/Users from Issuer knowing where a given token is being verified/used
- Work with common formats: Support JOSE/COSE based tokens/credentials, i.e. can be used natively for ISO mdoc and IETF SD-JWT-VC
- Caching Support: Enable verifying parties to cache status lists for offline verification

Proposed Solution

- Byte array based status list (for large amounts of credentials)
- Status is indicated by the value of a specific index in the status list
- Status List is Gzip-compressed and the outcome base64 encoded
- Signed and delivered as JWT/CWT

Example: Referenced Token

Example: Status List JWT

eyJhbGciOiJFUzI1NiIsImtpZCI6TjEyIiwidHlwIjoic3RhdHV zbGlzdCtqd3QifQ.eyJleHAiOjE2ODc1MTc3NzAsImlhdCI6MTY 4NjkxMjk3MCwiaXNzIjoiaHR0cHM6Ly9leGFtcGxlLmNvbSIsIn N0YXR1c19saXN0Ijp7ImJpdHMiOjIsImxzdCI6Ikg0c0lBTW9fa kdRQ196dnA4aE1BWkxSTE1RTUFBQUEifSwic3ViIjoiaHR0cHM6 Ly9leGFtcGxlLmNvbS9zdGF0dXNsaXN0cy8xIn0.8uaUXshaJdG WGjvwPwaa2Gtt0M7-M7dG09rXaz3x99LCdG5tKb-ARL1ezqguLT s63VeudYWqpdg4HpN-D2h0kg "alg": "ES256", "kid": "12", "typ": "statuslist+jwt"

"exp": 1687517770, "iat": 1686912970, "iss": "https://example.com", ... //other claims "status_list": { "bits": 1, "lst": "H4sIAMo_jGQC_zvp8hMAZLRLMQMAAAA" }, "sub": "https://example.com/statuslists/1"

Example: How it fits together

Further Features

- Status Type can be extended to represent more than 1 bit, i.e. "valid"/"invalid"
 - e.g. for suspension
 - Status Types are defined by the specification, extensible by IANA registry
- Fetching protocol over HTTP GET
 - Additional caching guidance by the Status List Provider by using HTTP Cache Control
 - Using Media Types (e.g. application/status-list+jwt) to differentiate between status list formats

JWT Status List Example sizes

- Average revocation rate on the web: 1,2 %
- Average Status List size: depends on several factors
 - Number of entities managed by the Issuer
 - Usage of batch credential issuance
 - Usage of decoy entries
- These sizes can be reduced by additional HTTP compression due to base64 encoding (~25%)

List Size (total number of entries)	0.1% revoked	1% revoked	2% revoked	5% revoked	10% revoked
10.000	433 bytes	660 bytes	868 bytes	1.258 bytes	1.717 bytes
100.000	806 bytes	2.913 bytes	4.796 bytes	9.616 bytes	12.908 bytes
1.000.000	4.241 bytes	25.302 bytes	42.550 bytes	80.441 bytes	123.185 bytes
10.000.000	39.146 bytes	246.938 bytes	417.993 bytes	794.874 bytes	1.225.229 bytes

Progress Update

- Working Group Adoption of draft
- Changed draft title
- Defined the HTTP protocol for status list retrieval
- IANA registrations for Media Types and JWT claims
- Privacy Considerations
- Updated Terminology Verifier -> Relying Party
- Gathered some early implementation detail on the approaches performance from a representation size efficiency perspective

Work in Progress

- Option for unsigned Status List over HTTP endpoint
- Switching compression to Zlib (suited better, no dynamic headers)
- Discussion on the Draft Title
 - OAuth Status List (current)
 - OAuth Token Status List
 - Token Status List
 - Bitarray Status List
- Design considerations for introduction
- CWT representations
- Security and implementation considerations
- Testing the current specification with implementations
- Discussion on more privacy-preserving options
- Comparison to/Lessons learned from existing revocation approaches

Links

- Current Editors Copy -> <u>https://datatracker.ietf.org/doc/draft-looker-oauth-jwt-cwt-status-list</u>
- Git Repository -> <u>https://github.com/vcstuff/draft-looker-oauth-jwt-cwt-status-list</u>
 - Please use Github Issues for feedback

Security Considerations

- Correct decoding, parsing and validation of the encoded status list: risk to fetch erroneous status data
 - Easy to implement algorithms
 - Test vectors for implementers
- Cached and stale status lists, Verifier should be aware if they fetch the up-to-date data
 - Status List contains expiration date
 - \circ HTTP caching mechanisms used in the retrieval protocol (next version)
- Status list only provides the up-to date/latest status, no historical data
 - May be provided by the underlying hosting architecture with additional API if necessary
 - Historical information is not necessary for most use-cases

Privacy Considerations

- Herd Privacy
 - $\circ \qquad {\sf Privacy\,depends\,on\,the\,size\,of\,the\,status\,list}$
 - \circ More entities means better herd privacy but larger file size and worse scalability
- Profiling/Tracking: Verifiers may regularly fetch the status list to create a profile
 - \circ \qquad Less number of Status Types prevents additional information leakage
 - reissue/refresh tokens regularly
- Malicious Issuers: issuers may generate unique status lists per credential
 - Theoretically possible, observable by Verifiers through metadata

Implementation/Privacy Considerations

- Correlation Risks
 - o Issuers should avoid using sequential indices, instead use randomized indices over multiple status lists
 - Issuers are recommended to use decoy/dead entries that are never assigned and other obfuscation mechanisms
 - Issuers using batch credential issuance should use individual indizes per credential
 - Batch revocation might reveal some correlation of presented credentials
- Third Party Hosting/CDN
 - Improves availability and scalability as Status List can be provided by third parties
 - Privacy may be increased if hosting of the status list is done by a third party instead of the issuer as it reduces tracking possibilities for the issuer but adds another party

Other approaches?

- Accumulator/ZKP-based approaches
- OCSP/Validity credentials
- X.509 Certificate Revocation Lists

Accumulator/ZKP-based approaches

- Revocation scheme based on cryptographic accumulators (usually RSA or EC)
- provides the best privacy properties (no tracking, one time proof of non-revocation)
- has a bad scalability
 - Hyperledger Indy revocation registries were capped to 32768 entities
- requires additional effort for the wallet
 - fetch accumulator and delta updates from the registry
 - complicated cryptographic computation (witness update) to perform proof to the Relying Party
- Not standardized
- Some of the better scaling variants are based on pairing-based cryptography
 - $\circ \qquad \text{Not well tested, not ready for production}$

 $\rightarrow\,$ This approach offers great potential for privacy but is still technically immature

OCSP Stapling/Validity credentials

- RFC 2560/6960 ASN.1-based status information is fetched by the Holder from the Issuer directly and "stapled" to the credential
- OCSP Stapling/Validity credentials reveal usage information directly to the Issuer
 - Loss of privacy towards the issuer
 - More privacy towards Relying Party as they are not able to re-check the status
- Has significant challenges for scalability
 - $\circ \qquad {\sf Overall\ system\ complexity\ scales\ with\ the\ number\ of\ holders\ \rightarrow\ more\ Holders\ than\ Relying\ Parties\ expected}$
 - \circ ~ Validity Responses by the Issuer must be computed dynamically \rightarrow high cost
- Requires less strict freshness to scale better (holders don't have to re-request status too often)
 - Relying Parties cannot directly communicate their requirements for freshness
- Very little existing work how this concept would apply to the VC ecosystem (validity credentials)

 \rightarrow This approach is doable but adds system complexity for Issuers and Holders and requires further adoption to VCs

X.509 Certificate Revocation Lists

- RFC 5280 ASN.1-based CRL for X.509 certificates
- In production, but has scalability issues
 - This is why browsers are using curated CRLSets/Bloom filters
- Similar privacy attributes as status list (also provides herd privacy for lookups)
- Supports historic data
- No good technological fit to formats chosen for PID/EAA

```
SEQUENCE (2 elem)
  INTEGER (127 bit) 88420065352722810812666266799670091075
  UTCTime 2022-10-14 06:55:22 UTC
SEQUENCE (2 elem)
  INTEGER (127 bit) 88554341061506736312168767598750025287
  UTCTime 2017-05-18 16:13:36 UTC
SEQUENCE (2 elem)
  INTEGER (127 bit) 88629796394860760821994410519264512596
  UTCTime 2022-01-20 08:15:10 UTC
SEQUENCE (3 elem)
  INTEGER (127 bit) 89021558990390393351828508107719758640
  UTCTime 2022-10-18 11:23:29 UTC
  SEQUENCE (1 elem)
     SEOUENCE (2 elem)
        OBJECT IDENTIFIER 2.5.29.21 cRLReason (X.509 extension)
        OCTET STRING (3 byte) 0A0104
          ENUMERATED 4
SEQUENCE (2 elem)
  INTEGER (127 bit) 89063883567155721811946583808813745262
  UTCTime 2020-09-10 08:09:07 UTC
```

→ This approach is similar to JWT/CWT Status List but conveys more information resulting in larger payloads

Comparison between Status List and CRL

	IETF JWT/CWT Status List	IETF CRL	
Technological fit	SD-JWT / mdoc (JSON/CBOR)	X.509 (ASN.1)	
size	grows with revocation rate	grows with revocation rate and time	
data	only includes up-to-date data	includes up-to-date and historic data	
Data representation	Gzip-compressed byte array	ASN.1-Sequence containing Serial number and timestamp	
Example size for n=100.000 p=0.01	2,9 kB (compressible by ~25%)	35 kB (compressible by ~35%)	