
Recursive Tree Structure (RTS) forwarding
PIM-WG, IETF118 Prague, v1.0

draft-eckert-pim-rts-forwarding-00
Toerless Eckert, Futurewei USA (tte@cs.fau.de) (Editor)Michael Menth, (menth@uni-tuebingen.de),Steffen Lindner, (steffen.lindner@uni-tuebingen.de)

1

mailto:tte@cs.fau.de)
mailto:menth@uni-tuebingen.de
mailto:menth@uni-tuebingen.de
mailto:menth@uni-tuebingen.de

Why are we here ? – FOR YOUR OWN READING
2002?...2014 SPs want MPLS multicast... Industry implements, IETF standardized

After actual deployment experience: tree-state in core too high-opex (large operators)
RFC7988 - Ingress Replication Tunnels in Multicast VPN
Could have stayed with PIM and avoided decade of IETF & industry work on MPLS multicast ..MPLS multicast (RSVP-TE/P2MP, mLDP) also victim of unicast MPLS evolve to SR-{MPLS,v6}.

2013..now: BIER – Bit Index Explicit Replication
“Source-routed-replication” instead of tree state.
Common source-routing header independent of unicast (MPLS/IP)
“global” (domain-wide) bitstrings to encode addresses
Control plane from SR - “do everything needed with IGP extensions”
RFCs (not architecture) focus still on (big) service provider networks(PE to PE).

2015...now: BIER-TE tree engineering with BIER architecture
Utilize same global bitstrings, (almost same) forwarding-plane mechanisms as BIER

2020...now: experimental work looking beyond global bitstrings – for HIGH SPEED HARDWARE
What is the best source-routing mechanism with todays/future hardware (not 2010 hardware).
E.g.: initial experiment “Recursive Bitstring Tree” (RBS) to PIM/IETF113 and then to BIER-WG. 2

Challenges of BIER / BIER-TE – global bitstrings
Processing of large bitstring (BIER allows up to 4096)expensive/complex

Counter-intuitive .. Potentially HW-over?-expensive:If router has only 16 neighbors, why to process up to 4096 bits of receivers ?
Optimized P4 implementation with intelligent optimization - 256 bit bitstring [Menth23f]

Smaller bitstrings (e.g.: 256 bits) =>
Requires multiple Bitstring in larger networks = multiple packets

Requires (centralized) SDN mechanisms for bit assignments
Makes especially BIER-TE complex/hard-to-scale

TE important for high-value traffic (DetNet - bandwidth/latency managemtent)
Even when multicast trees are small (“sparse”) in large networks.

They will statistically require multiple packet copies 3

BIER/TE Global bitstring(s) Management

4

Sender

Receiver with bit in first bitstring (1-256)Receiver with bit in second bitstring (256-512)Receiver with bit in third bitstring (513-768)

Assume more receivers than bits in bitstring. E.g.: 3x as many.
Even just 3 receivers may require 3 packet from the sender
BIER-TE has even more management/scale complexity

Transit notes needs bits (for steering)
Need bits in every bitstring (color) passing through them

Some scale number presented in MBoned session
Sender

Random assignment of bits/bitstringto receivers

Transit links need to carry up to 3 copies.Topology aware bit assignmentnecessary to minimize number of copies

1

2
34

BIER-TE: additional bits for transitnotes - multiple!

Solution: Encode the actual (sub) tree in the header
1. Each router only need list of neighbors it needs to replicate to:

Rx -> {R2, R4} R2, R4 = List of SIDs.
2. Each of those neighbors has their own sub-tree (unless it is a leaf on thetree). We call this sub-tree a Recursive Unit (RU):

Rx -> { R2 -> RU2 , R4 -> RU4}
For Rx, the RU for R2 and R4 are just opaque blobs of data.There is no parsing of them on Rx.

3. When replicating the packet to a neighbor,it only needs to receive the RU designated for it:
RU2 -> { R5, R6 }
RU4 -> { R9, R10 }

4. Packet from Ra -> R1 -> Rx:
Ra -> {R1 -> {Rx -> {R2 -> { R5, R6 } , R4 -> { R9, R10 }}}}
R1 -> {Rx -> {R2 -> { R5, R6 } , R4 -> { R9, R10 }}}
Rx -> { R2 -> {R5, R6} , R4 -> {R9, R10}}

5

Rx

R1

R3
R7 R8

Ra R‘

RecursiveUnit of Rx

RecursiveUnit of R2

R2
R5 R6

R4
R9 R10
RecursiveUnit of R2

RecursiveUnit of R1

Encoding with list of next-thop ‘SIDs’ or local bitstring
Replication with list of SIDs as shown on prior slide:

Rx -> { R2 -> RU2, R4 -> RU4 } RU2, RU4 represent the recursive units for R2, R4
Replication with local bitstring:

Rx -> { [R2, R4] RU2, RU4 } [R2, R4] represent a “local bitstring” with bits for all local neighbors of Rx
Which encoding is better / more compact ? No one-size-fits-all! But many/most trees are sparse
Assume local SID (for all L2 adjacent neighbors) are 8 bit long:
A) Rx is Edge router with 128 neighbors: local bitstring needs 128 bitlocal SID list encoding more compact than bitstring if tree has no more than 16 neighbors
B) Rx is Core router with 32 neighbors: local bitstring needs 32 bitlocal SID list encoding more compact than bitstring if tree has no more than 4 neighbors
Assume SID list also allows global SIDs (16 or 24 bit long).Allows to skip over sequences of non-replicating neighbors and produce more compact encodingsNot applicable where we need “strict trees”, such as when guaranteeing path bandwidth (e.g.: DetNet)
Want an encoding that supports local and global SID lists and local bitstrings ! 6

Forwarding plane implementation considerations
See current state/experiences in BIER-WG presentation

Not yet at implementation stage of supporting local bitstrings, local / global SIDlists at the same time (in P4 on high speed hardware) ... But hopeful to get there.
Transferring only RU into packet copies works well.
local / global SID, local bitstrings, RU need to be byte aligned

Across high speed platforms:
Because RU are not examined but only copied
we think this scheme supports largest possible headers

The larger the header, the more receivers a packet will address
This makes large headers always save bits on the wire compared to unicast

7

No management plane complexity
local SIDs and local bitstring bits assigned autonomously

Announced into routing (IGP)
Global SIDs are like loop-back interface addresses

No engineering needed, just uniqueness
Large trees (exceeding maximum header size) can easily be broken intomultiple packets / sub-trees – autonomously by library in sender

Brute force: stop encoding tree when header is full, restart next packet skippingreceivers already in prior packets.
8

9

Interconnected
Backbone

Access
Rings

…

8 rings

…… … …

Zone1

ASBR

Dual Return Access

CSBR

Core layer

Aggregation
layer

Encoding optimization for large trees

IPTV and other “broadcast” applications may need toGo to many/most receivers (large tree).
Encoding optimization: “broadcast to all your leaf neighbors”
Simulation comparison BIER, Recursive Bitstrings for large SPNumber of copies even goes down with larger trees!

Where to go from here
Ongoing prototyping work on P4

draft shows hopefully possible encoding ideas
BIER-WG liked initial bitstring encoding (RBS) but said no interest in SID lists.

So not sure which WG to best do this work in.
But not yet asking anyone for adoption anyhow - just looking for interest/collaboration.

Not meant to displace but amend/expand work of BIER/BIER-TE architecture:
Larger networks, less management complexity, better scalable tree engineering, betterscalable forwarding plane implementations ???!!!

Broadening interest in stateless multicast source-routing beyond SP would be great!
Presenting to PIM as the larger community

10

