
Open issues for DAP
IETF 118 - PPM - Christopher Patton

1



#436, 409, 405, 316, 259 Collecting a batch many times

● We sometimes want to collect a batch multiple times: drill-down (#489); 
heavy-hitters (Poplar1)

○ Requirements: Enforce aggregation parameter validity, per draft-irtf-cfrg-vdaf, Section 5.3

○ Problem: No one has implemented this (not required for Prio3), so we don't know yet if the 
spec is correct

■ Sub-optimal communication (#409, 405)

■ Potential bugs (#436, 316, 259)

■ Incomplete definitions ("batch" is ill-defined in the context of multiple collections)

■ Proposal #1: Someone implement it and propose a PR to address any issues

■ Proposal #2: Remove support for collecting a batch multiple times (i.e., don't support 
heavy-hitters)

2

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues?q=is%3Aissue+is%3Aopen+label%3A%22collecting+a+batch+more+than+once%22
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/489
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf#section-5.3


#519 Batch selection as Collector-Leader "business logic"

● DAP needs a way for the Aggregators to partition reports into batches
○ Different Batching strategies formalized as "query types" (Time-interval, Fixed-size, …?) that 

give the Collector some in-band control over batch selection

○ Problem: Supporting multiple query types adds complexity for implementations

■ Observation: Fixed-size is general enough to support many batching strategies as 
out-of-band "business logic" implemented Collector and Leader

● Proposal #1: Remove query types and adopt Fixed-size semantics (Leader 
arbitrarily assigns reports to batches identified by batch IDs)

○ What do implementers think?

● Proposal #2: Do nothing (implementations are free to ignore query types)

3

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/519


● Use case: Collector wants to split aggregate result by arbitrary "labels" 
(user-agent, geolocation, etc.)

○ Problem: Currently requires configuring a task for each label ⇒ lacks flexibility, doesn't scale, 
we miss out on data for "unpopular" labels

■ Proposal #1: Add labels to report metadata, enrich queries to support label sets

● Problem: Labels are fingerprintable

● Problem: Still need to enforce the same minimum batch size

■ Proposal #2 (not mutually exclusive with #1): Do per-label aggregation in MPC 
(draft-mouris-cfrg-mastic)

● Perhaps not as flexible as we need (can do label1=="value1" && 
label2=="value2" but can't do label1=="value1" || label label2=="value2")

#489 Supporting drill-down

4

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/489#issue-1827191566
https://datatracker.ietf.org/doc/draft-mouris-cfrg-mastic/
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/489


#500 Agreement on task parameters

● Desirable property: Honest parties that execute a task agree on the 
parameters of that task.

○ Requirement: Successful completion of the upload, aggregation, or collect sub-protocol 
should imply agreement on task configuration.

■ Proposal #1: draft-wang-ppm-dap-taskprov derives task ID from serialized task config 
⇒ agreement on task ID implies agreement on task parameters

■ Proposal #2: Add specific parameters to AAD for HPKE encryption

■ Proposal #3: "The application MUST implement some mechanism for enforcing 
agreement on the task configuration."

5

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/500
https://datatracker.ietf.org/doc/draft-wang-ppm-dap-taskprov/
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/500#issuecomment-1756962734


#141 Recovering after batch mismatch

● Batch mismatch (Leader and Helper don't agree on the set of reports in the 
batch) is currently fatal.

○ Proposal #1: Do nothing, since (1) we can detect batch mismatches and (2) batch mismatch 
is unlikely

■ Can happen if: one Aggregator's storage gets corrupted; other reasons?

○ Proposal #2: Add mechanism allowing the Leader to find the missing reports and retry them

6

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/141


#446 Cheaper checksum

● During collection, the Aggregators check for batch mismatch by computing a 
checksum over the reports.

○ Problem: The current checksum looks more expensive than necessary. Can't just get rid of it 
because it has been useful for detecting issues in implementations.

■ Question: If the attacker controls a subset of Clients and can trigger a network error that 
causes a batch mismatch, then it can choose report IDs such that the Aggregators 
compute the same checksum (and thus fail to detect the batch mismatch). Do we care?

■ Requirement: Checksum computation must be independent of the order of reports.

● Proposal #1: Make it cheaper

● Proposal #2: Make it optional

● Proposal #3: Do nothing because it's relatively inexpensive
7

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/446
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/446#issuecomment-1530258018
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/446#issuecomment-1525826013
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/446#issuecomment-1526724909
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/pull/511
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/446#issuecomment-1771830967


#472 Deviations from TLS-syntax

● Protocol messages are specified in "TLS-syntax" from RFC 8446, Section 3.

○ Problem: We deviate from a strict interpretation of this spec

■ Proposal #1: Extend TLS-syntax to meet our needs

■ Proposal #2: Fully comply with TLS-syntax as it is (explain things in prose as needed)

■ Proposal #3: Explain deviations when they arise and limit them as much as possible

struct {
  PrepareStepState prepare_step_state = 2; /* reject */
  ReportId report_id;
  ReportShareError report_share_error;
} PrepareStep;

draft-ietf-ppm-dap-07, Section 4.5.1.2

8draft-irtf-cfrg-vdaf-07, Section 5.8

struct {
  MessageType type;
  select (Message.type) {
…
    case continue:
      opaque prep_msg<0..2^32-1>;
      opaque prep_share<0..2^32-1>;
    case finish:
…
  };
} Message;

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/472
https://www.rfc-editor.org/rfc/rfc8446#section-3
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/472#issuecomment-1594845236
https://datatracker.ietf.org/doc/html/draft-ietf-ppm-dap-08#section-4.5.1.2-9
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf#section-5.8-6


#459 GET {aggregator}/hpke_config

● Idea: Make this endpoint "look like" the others

○ Proposal #1 (PR #510): Add task ID ⇒ {aggregator}/tasks/{task-id}/hpke_config

○ Proposal #2: Do nothing, as this issue is more aesthetic than anything.

9

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/459
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/pull/510


#450 PUT or POST {leader}/tasks/{task-id}/reports

● We currently PUT, which contradicts RFC 9110, Section 9.3.4 (we're not 
"replacing" the resource of the request path)

○ Question: Is this an issue for upload only, or is it also an issue for aggregation and collection?

■ If so, then Proposal #1: Add the report ID to the request path

10

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/450
https://www.rfc-editor.org/rfc/rfc9110.html#section-9.3.4-9
https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/450#issuecomment-1531831604


Backup slides

11



Poplar1 versus Mastic (draft-mouris-cfrg-mastic)

12

Poplar1 Mastic

heavy hitters yes yes*

weighted heavy hitters no yes

"Prio with labels" no yes

primitives IDPF + "secure sketch" "verifiable" IDPF + FLP

number of aggregators 2 2

prep rounds 2 1

overall communication (bits) – a little higher*

overall computation – about the same

*VIDPF-proof aggregation

https://datatracker.ietf.org/doc/draft-mouris-cfrg-mastic/

