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DP Motivation - from IETF117

● Keeping the measurements private (as DAP does) may not be 
enough: the aggregate result may leak (bits of) an individual 
measurement

○ Motivating example: Average height of a group of people 
with or without an especially tall (or short) individual

● Differential Privacy (DP): the aggregate result (or, more generally, 
the adversary's view) should not change significantly if any 
one measurement is replaced by another

○ Achieved by adding noise to:

■ the measurements by the Clients; and/or

■ the aggregate shares by the Aggregators.
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DP Background
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● DP is a class of definitions, e.g., ε-DP, (ε, δ)-DP, Rényi-DP, and each of them can 
be the preferable one depending on the application.

● DP is in the eye of the beholder: what DP guarantee you get against a particular 
adversary is a function of what information is available to that adversary. Hence, 
we need to define trust models.



New draft: draft-wang-ppm-differential-privacy-00

● Choose a class of DP notions that are suitable for DAP, e.g., pure ε-DP, 
approximate (ε, δ)-DP.

● Define various trust models that we aim to achieve DP in.

● Refine interfaces for “DP mechanisms”.

● Refine interfaces for “DP policies” that are implemented with DP mechanisms and 
composed with VDAFs.

● Describe concrete use cases, e.g., Histogram, with DP achieved by different DP 
policies.

4

https://datatracker.ietf.org/doc/draft-wang-ppm-differential-privacy/00/


Our audiences

● DAP deployments that want a “cookbook” for making their applications differentially private.

● DP researchers and domain experts.
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Standardize DP Definitions

● ε-DP: ε describes the privacy loss of observing the aggregate result, when there 
is a change in the batch of measurements. Smaller ε means stronger privacy.

● (ε, δ)-DP: relaxes ε-DP by a small δ, which describes the probability of 
information leakage. Allowing for a small δ can allow randomized algorithms to 
add less noise. Smaller δ means stronger privacy.

● We note there are other DP definitions that we haven’t accounted for in the first 
version of the draft.
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Trust Models

● Goal: Design DP policies that account for attackers that control the network and 
corrupt parties in DAP.

● We define three increasingly pessimistic trust models:

○ One-Aggregator-Most-Clients (OAMC)

■ Same trust model as Core DAP when all Clients are honest.

○ One-Aggregator-One-Client (OAOC)

○ One-Client (OC)
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Aggregator

Client

OAMC, ideal ε OAOC, ε’ >> ε 

● Hedging: Achieve some degree of privacy when an optimistic trust model’s assumptions turn out to be 
false.

● For example: a DP policy achieves ideal ε in OAMC trust model. But if deployment turns out to be OAOC, 
then it’s more desirable for the DP policy to maintain some weaker DP guarantee of ε’. 

Trust Models - Hedging
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DP Mechanisms

● A DP mechanism is responsible for sampling noise with parameters derived based 
on the target DP.

● Examples:

○ Discrete Laplace [CKS’20]

○ Discrete Gaussian [CKS’20]

○ Symmetric RAPPOR [EPK’14, MJTB+’22]

● We want to standardize DP mechanisms to prevent implementation bugs that break 
DP [CSVW’22, JMRO’22, Mir’12].
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[EPK’14] Erlingsson, Ú., Pihur, V., and A. Korolova, "RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response", 2014
[MJTB+’22]  McMillan, A., Javidbakht, O., Talwar, K., Briggs, E. "Private Federated Statistics in an Interactive Setting", 2022
[CKS’20] Canonne, C. L., Kamath, G., and T. Steinke, "The Discrete Gaussian for Differential Privacy", 2020
[CSVW'22] Casacuberta et al. "Widespread Underestimation of Sensitivity in Differentially Private Libraries and How to Fix It." CCS 2022
[JMRO'22] Jin et al. "Are We There Yet? Timing and Floating-Point Attacks on Differential Privacy Systems." IEEE S&P 2022
[Mir'12] Mironov. "On Significance of the Least Significant Bits For Differential Privacy." ACM CCS 2012

https://arxiv.org/abs/1407.6981
https://arxiv.org/abs/2211.10082
https://arxiv.org/abs/2004.00010
https://salil.seas.harvard.edu/sites/scholar.harvard.edu/files/salil/files/3548606.3560708.pdf
https://arxiv.org/abs/2112.05307
https://www.microsoft.com/en-us/research/wp-content/uploads/2012/10/lsbs.pdf


● A DP policy is implemented with DP mechanisms to endow 
VDAFs with DP.
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DP Policies

● A DP policy is implemented with DP mechanisms to endow 
VDAFs with DP.

● It requires applying DP mechanisms by Clients and/or 
Aggregators, and debiasing aggregate result by the Collector.
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Use Case: Collecting histogram  
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[EPK’14] Erlingsson, Ú., Pihur, V., and A. Korolova, "RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response", 2014
[MJTB+’22]  McMillan, A., Javidbakht, O., Talwar, K., E. Briggs. "Private Federated Statistics in an Interactive Setting", 2022
[CKS’20] Canonne, C. L., Kamath, G., and T. Steinke, "The Discrete Gaussian for Differential Privacy", 2020
[BW’18] Balle, B. and Y. Wang, "Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising", 2018

Policy 1: Pure Client 
Randomization

Policy 2: Pure Aggregator 
Randomization

Target Trust Model OAMC OAOC

DP Mechanism Symmetric RAPPOR [EPK’14, 
MJTB+’22] from each honest Client

Discrete Gaussian [CKS’20, BW’18] 
from each honest Aggregator

VDAF Prio3MultiHotHistogram* Prio3Histogram

Table 1: DP Policies for Histogram.
*We note Prio3MultiHotHistogram is a private VDAF.

● Goal: Achieve (ε, δ)-DP on collecting histogram, where each Client submits an 
one-hot vector.

https://arxiv.org/abs/1407.6981
https://arxiv.org/abs/2211.10082
https://arxiv.org/abs/2004.00010
https://arxiv.org/abs/1805.06530


Use Case: Collecting histogram - Utility
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ε δ Standard Deviation of Pure Client 
Randomization

Standard Deviation of Pure Aggregator 
Randomization (two Aggregators)

0.32 1e-9 26.14 33.09

0.91 1e-9 12.28 12.08

1.53 1e-9 9.59 7.35

Table 2: Utility of DP policies in different (ε, δ)-DP.
Lower standard deviation means better utility.

● Either DP policy has utility advantage in different settings of (ε, δ)-DP.

● Noise is doubled in the policy with pure Aggregator randomization.



Future Work

● Work out the implementation details of DP mechanism.

● Figure out if there are other quantitative and qualitative criteria to evaluate DP 
policies.

● Figure out if it’s worth discussing MPC protocols [KKLVH’23] for Aggregators to 
collectively add noise.

● More concrete use cases.
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[KKLVH’23] Keeler D., Komlo C., Lepert E., Veitch S., and X. He. “DPrio: Efficient Differential Privacy with High Utility for Prio”, 2023

https://petsymposium.org/popets/2023/popets-2023-0086.php


Questions

We feel this work is important and that PPM is well-positioned to take it on.

1. Is this work useful?

2. Is the draft scoped properly? Any suggestions?

3. Should PPM adopt this draft?
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