
Threats to quantum cryptography in presence of losses

Davide Li Calsi, Paul Kohl, JinHyeock Choi and Janis Nötzel

Arbeitsgruppe Theoretisches Quantensystemdesign (TQSD) Lehrstuhl für Theoretische Informationstechnik (LTI) Technische Universität München (TUM)

November 7, 2023

Tur Uhrenturm

Contents

- Theoretical Quantum Systems Design (TQSD)
 - Research activities
- Problems of direct transmission
 - Qubit, transmission and transducer limit
- Quantum crypto background
 - Public key, authentication, oblivious transfer
- Vulnerabilities
 - Public key, authentication, oblivious transfer
- Mitigation
 - Quantum teleportation via entanglement distribution

Theoretical Quantum Systems Design (TQSD)

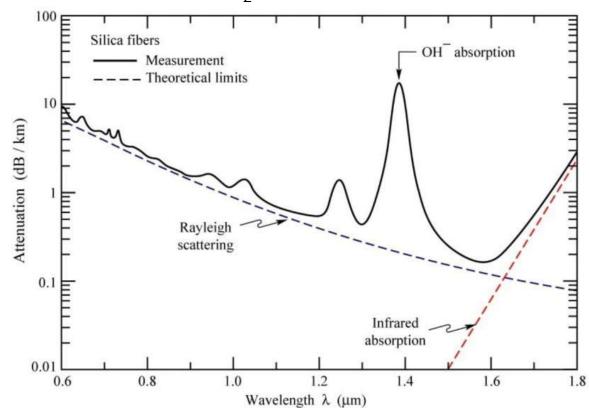
• Working group in **Technische Universität München (TUM)** for **theoretical foundations of quantum system** design.

- Research agenda
 - **Emulation** of future hybrid quantum communication networks.
 - Quantum system design, in particular the interaction of the **different resources** that can be used for **high data rates** and **reliable** communication.
 - Investigating new potential use cases enabled by adding quantum communication resources, especially, entanglement-assisted communication.
 - **Secure** message transmission over quantum channels.

TQSD current projects

- Q.TOK
 - Quantum token-based authentication and secure data storage
 - In collaboration with 7 memory projects in Grand Challenge of Quantum Communication.
- QD-CamNetz
 - Working on a quantum internet demonstrator with three nodes
 - Joint project with TU Dresden
- QuaPhySI
 - Investigating quantum technologies for Physical Layer Service Integration
- and more

Qubit limits


- Constraints from quantum mechanics
 - No measurement without state altercation
 - No cloning
 - No copy and retransmission.
- The sender may not know the qubit to send.
 - For BB84 QKD, the sender may know the qubit state.
 - For quantum money, the owner can't know.
- Sometimes nobody knows the qubit state.
 - E.g. QPUF-based quantum token.
 - Prevents malicious cloning but the loss from a link failure is irrevocable.

Transmission Limits: Losses & Absorption

- Losses due to bending
- Impurities, splicing, and connections lead to absorption/scattering
- Intrinsic absorption in every material
- Dependent on implementation, absorption may effect qubit loss in transmission

Transmission Limits: Absorption

• e.g. Absorption in standard SiO₂ fibres

7

Transmission Limits: Dispersion and Broadening Effects

- Wavelength dependency of refractive index/propagation speed
- In reality nonzero spectral linewidth of signal pulse (thermal & intrinsic effects)
- Thus temporal broadening of pulses
- Wavelength dependency of optical hardware may lead to loss
- Degraded indistinguishability of photons => failure rate of quantum operations

Transduction Limits

- Losses in conversion from flying to stationary qubit
- Highly dependent on implementation
- Most often light-matter interaction
- Described by cavity quantum electrodynamics (QED)
- Two-level system (TLS) in resonator cavity as stationary qubit
- Light entering cavity as flying qubit

Crypto background

- Public-key encryption and digital signature
- Identity Authentication
- 1-2 Oblivious Transfer : Alice has two messages {m0,m1}, Bob chooses one to receive. They DO NOT TRUST each other
 - Alice cannot guess Bob's choice
 - Bob cannot learn the other message

Vulnerability: Public-key encryption

- Public-key scheme, based on qubit rotations*
 - classical message encrypted through a quantum public key
 - yields a quantum ciphertext
 - receiver decrypts via a classical private key
- Key-pair generation
 - **Example** (using 4-bits numbers):
 - private_key = { 7, 1, 2, 12} (random)
 - Consider angles {7/16 *Pi, 1/16 *Pi, 2/16 *Pi, 12/16 *Pi}
 - Get 4 qubits in |0> state, rotate them by the above angles
- Encryption
 - Rotate public-key qubits by 0 or Pi
- Decryption
 - Apply inverse (w.r.t key-gen phase) rotations

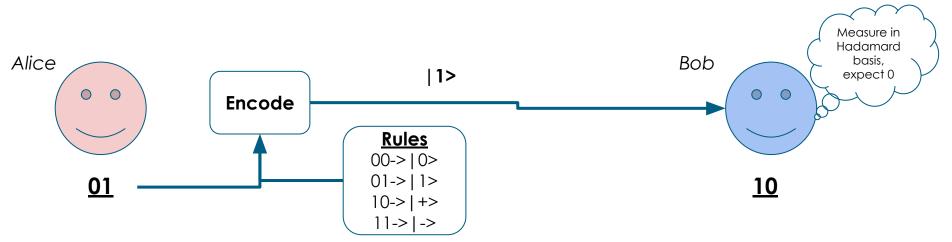
*Nikolopoulos, Georgios M. "Applications of Single-Qubit Rotations in Quantum Public-Key Cryptography." Physical Review A, vol. 77, no. 3, Mar. 2008. Crossref, https://doi.org/10.1103/physreva.77.032348.

11

Vulnerability: Public-key encryption and digital signature

- Problems of quantum keys
 - with enough copies, adversaries can learn the private key
 - receiver must make sure there is a limited number of copies at all times
 - what if a public key is lost? (while encrypting, while sending it...)

	Assumed: Benign Loss	Assumed: Malicious Steal
Reality: Benign Loss	Receiver re-sends the key to the honest user who lost it	Receiver refuses retransmission, honest user can no longer send an encrypted message
Reality: Malicious Steal	Attackers gain more copies of the key, and later leak the private key	Receiver refused retransmission, successfully prevents an attack


Vulnerability: Public-key encryption and digital signature

- Similar problem in quantum digital signature scheme by Gottesman and Chuang*
- Other protocols under investigation

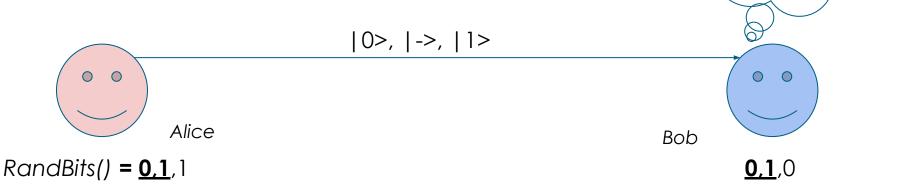
*Gottesman, Daniel, and Isaac Chuang. "Quantum digital signatures." arXiv preprint quant-ph/0105032 (2001).

Vulnerability: Authentication

- Consider (a simplified version of) this protocol by Hong et al*.
 - Alice and Bob pre-share a classical key
 - Alice maps every two bits of her key to one of the BB84 states
 {|0>, |1>, |+>, |->}
 - Bob measures and compares according to his bits
 - Example

*Hong, Chang ho, et al. "Quantum identity authentication with single photon." Quantum Information Processing 16 (2017): 1-20.

Vulnerability: Authentication


- Multiple copies of the same qubit leak the corresponding key
 - what if a qubit is lost?

	Assumed: Benign Loss	Assumed: Malicious Steal
Reality: Benign Loss	Alice resends the qubit to Bob, who can verify her key	Alice will not allow Bob to verify her identity, authentication failed
Reality: Malicious Steal	Attackers gain more copies of the qubit, and later leak the private key bit	Alice avoids an attack

Vulnerability: Oblivious transfer

• Alice and Bob start a BB84 key exchange

Measure in

COMP

HADAMARD

- The rest is classical post-processing and communication
- Bob didn't guess some bases in some positions, won't learn both messages

*Bennett, Charles H., et al. "Practical quantum oblivious transfer." Annual international cryptology conference. Berlin, Heidelberg: Springer Berlin, Heidelberg, 1991.

Vulnerability: Oblivious transfer

• What if the qubits are lost?

	Assumed: Benign Loss	Assumed: Malicious Claim
Reality: Benign Loss	Alice resends the qubits to Bob, so that the protocol may continue	Alice will not resend the qubits, threatening the protocol's correctness.
Reality: Malicious Claim	Bob gains more copies of the qubits, possibly learning corresponding key bits	Alice avoids an attack by Bob trying to guess both messages

- Fortunately, there is a simple mitigation
 - Alice just replaces lost qubits with new random qubits (random value and basis)
 - Negligible overhead, preserves security

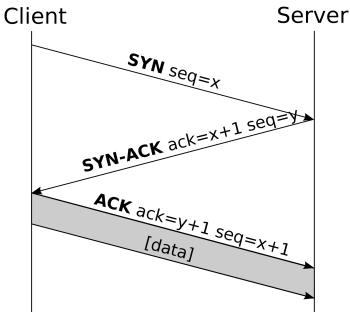
Mitigations

- Some protocols are inherently immune
 - BBCS for OT, Kanamori et al*'s authentication
- For some protocols, **teleportation** mitigates the threat
 - Error happens when sharing entanglement -> still recoverable
 - Following the procedure suggested in **RFC9340**
- Use of decoy states
 - First proposed by Hwang* for QKD
 - Hong et al. propose their use to detect eavesdroppers.
 - Active adversaries are still a threat, requires information on the channel

*Y. Kanamori, Seong-Moo Yoo, D. A. Gregory and F. T. Sheldon, "On quantum authentication protocols," GLOBECOM '05. IEEE Global Telecommunications Conference, 2005., St. Louis, MO, USA, 2005, pp. 5 pp.-, doi: 10.1109/GLOCOM.2005.1577930.
*Hwang, Won-Young (1 July 2003). "Quantum Key Distribution with High Loss: Toward Global Secure Communication". Physical Review Letters. 91 (5): 057901

Thanks for your attention.

Transduction Limits


- System dynamics described via:
 - Emitter decay rate γ : TLS decay in the cavity mode, approx. by lifetime τ of TLS excited state via $\gamma \approx 1/\tau$
 - Cavity loss rate κ : rate of photons exiting cavity, depends on quality factor Q of resonator via $\kappa \propto 1/Q$
 - Coupling strength go between TLS and photon, depends on mode volume Vo of resonator: $g_0 \propto \sqrt{1/V_0}$.
- Different cavity designs with different Q and Vo, like micropillars or photonic crystals, etc.
- Different TLS like quantum dots (QD), vacancy centres, etc.

Crypto Primitives

- Public-key crypto: generate a public and private key
 - Anybody can use the public key to encrypt a message
 - Only you can use the private key to decrypt it
- Digital signature: generate a public and private key
 - Only you can **sign a message** with your **private key**
 - Anybody can verify your signature with the public key

Retransmissions in classical communication

- Messages are lost in modern telecom
- **TCP/IP** stack designed to tolerate losses
- Classically, the solution is simple: retransmit
 - Before sending a message, always duplicate it
 - Send the copy, keep original for later retransmissions
- In TCP, receivers send ACKs for each packet
 - If no ACK is received for one packet, retransmit
- No threat to classical cryptography
 - Classical information is copyable
 - Computational hardness is not affected

Rotations used in public-key scheme

Rotation by angle **x** around the **y** axis: **R(x)**

R(x) = exp{-ix * Y/2}

Operator Y=i(|1><0|-|0><1|)

Maps |0> into cos(x/2) |0> + sin(x/2) |1>