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• Working group in Technische Universität München (TUM)  for theoretical 
foundations of quantum system design.

• Research agenda 
• Emulation of future hybrid quantum communication networks.  
• Quantum system design, in particular the interaction of the different resources that 

can be used for high data rates and reliable communication.  
• Investigating new potential use cases enabled by adding quantum communication 

resources, especially, entanglement-assisted communication.
• Secure message transmission over quantum channels. 

Theoretical Quantum Systems Design (TQSD)
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• Q.TOK 
• Quantum token-based authentication and secure data storage 
• In collaboration with 7 memory projects in Grand Challenge of Quantum 

Communication. 

• QD-CamNetz 
• Working on a quantum internet demonstrator with three nodes

• Joint project with TU Dresden

• QuaPhySI 
• Investigating quantum technologies for Physical Layer Service Integration

• and more

TQSD current projects  
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• Constraints from quantum mechanics 
• No measurement without state altercation 
• No cloning
• No copy and retransmission. 

• The sender may not know the qubit to send. 
• For BB84 QKD, the sender may know the qubit state. 
• For quantum money, the owner can’t know.

• Sometimes nobody knows the qubit state. 
• E.g. QPUF-based quantum token.
• Prevents malicious cloning but the loss from a link failure is irrevocable.   

Qubit limits
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• Losses due to bending

• Impurities, splicing, and connections lead to absorption/scattering

• Intrinsic absorption in every material

• Dependent on implementation, absorption may effect qubit loss in 
transmission

Transmission Limits: Losses & Absorption 
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• e.g. Absorption in standard SiO2 fibres

Transmission Limits: Absorption 
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• Wavelength dependency of refractive index/propagation speed

• In reality nonzero spectral linewidth of signal pulse (thermal & intrinsic 
effects)

• Thus temporal broadening of pulses

• Wavelength dependency of optical hardware may lead to loss

• Degraded indistinguishability of photons => failure rate of quantum 
operations

Transmission Limits: Dispersion and Broadening Effects
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• Losses in conversion from flying to stationary qubit

• Highly dependent on implementation

• Most often light-matter interaction

• Described by cavity quantum electrodynamics (QED)

• Two-level system (TLS) in resonator cavity as stationary qubit

• Light entering cavity as flying qubit

Transduction Limits
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• Public-key encryption and digital signature

• Identity Authentication

• 1-2 Oblivious Transfer : Alice has two messages {m0,m1}, Bob chooses 
one to receive. They DO NOT TRUST each other

• Alice cannot guess Bob’s choice

• Bob cannot learn the other message

Crypto background 
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• Public-key scheme, based on qubit rotations*
• classical message encrypted through a quantum public key
• yields a quantum ciphertext
• receiver decrypts via a classical private key

• Key-pair generation
• Example (using 4-bits numbers):

• private_key = { 7, 1, 2, 12} (random)
• Consider angles {7/16 *Pi, 1/16 *Pi, 2/16 *Pi, 12/16 *Pi}
• Get 4 qubits in |0> state, rotate them by the above angles

• Encryption
• Rotate public-key qubits by 0 or Pi

• Decryption
• Apply inverse (w.r.t key-gen phase) rotations

Vulnerability: Public-key encryption

*Nikolopoulos, Georgios M. “Applications of Single-Qubit Rotations in Quantum Public-Key Cryptography.” 
Physical Review A, vol. 77, no. 3, Mar. 2008. Crossref, https://doi.org/10.1103/physreva.77.032348. 11



• Problems of quantum keys
• with enough copies, adversaries can learn the private key
• receiver must make sure there is a limited number of copies at all times
• what if a public key is lost? (while encrypting, while sending it…)

Vulnerability: Public-key encryption and digital signature

Assumed: Benign 
Loss

Assumed: Malicious 
Steal

Reality: Benign Loss
Receiver re-sends the key to 

the honest user who lost it
Receiver refuses 

retransmission, honest user 
can no longer send an 

encrypted message

Reality: Malicious 
Steal

Attackers gain more copies of 
the key, and later leak the 

private key

Receiver refused 
retransmission, successfully 

prevents an attack
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• Similar problem in quantum digital signature scheme by 
Gottesman and Chuang*

• Other protocols under investigation

Vulnerability: Public-key encryption and digital signature

*Gottesman, Daniel, and Isaac Chuang. "Quantum digital signatures." arXiv preprint quant-ph/0105032 (2001).
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• Consider (a simplified version of) this protocol by Hong et al*.
• Alice and Bob pre-share a classical key
• Alice maps every two bits of her key to one of the BB84 states 

{|0>,|1>,|+>,|->}
• Bob measures and compares according to his bits
• Example

Vulnerability: Authentication

01 10

Alice Bob

Measure in 
Hadamard 

basis, 
expect 0

Rules
00->|0>
01->|1>
10->|+>
11->|->

Encode
|1>

*Hong, Chang ho, et al. "Quantum identity authentication with single photon." Quantum Information Processing 16 (2017): 1-20. 14



• Multiple copies of the same qubit leak the corresponding key
• what if a qubit is lost?

Vulnerability: Authentication

Assumed: Benign 
Loss

Assumed: Malicious 
Steal

Reality: Benign Loss
Alice resends the qubit to 

Bob, who can verify her key
Alice will not allow Bob to 

verify her identity, 
authentication failed

Reality: Malicious 
Steal

Attackers gain more copies of 
the qubit, and later leak the 

private key bit

Alice avoids an attack
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• BBCS* protocol implements secure OT
• Alice and Bob start a BB84 key exchange

Vulnerability: Oblivious transfer

|0>, |->, |1>

RandBits() = 0,1,1 0,1,0

Measure in 
COMP

HADAMARD
HADAMARD

• The rest is classical post-processing and communication
• Bob didn’t guess some bases in some positions, won’t learn both messages

Alice Bob

*Bennett, Charles H., et al. "Practical quantum oblivious transfer." Annual international cryptology conference. Berlin, Heidelberg: Springer Berlin 
Heidelberg, 1991. 16



• What if the qubits are lost?

Vulnerability: Oblivious transfer

Assumed: Benign 
Loss

Assumed: Malicious 
Claim

Reality: Benign Loss
Alice resends the qubits to Bob, 

so that the protocol may 
continue 

Alice will not resend the 
qubits, threatening the 
protocol’s correctness. 

Reality: Malicious 
Claim

Bob gains more copies of the 
qubits, possibly learning 
corresponding key bits

Alice avoids an attack by Bob 
trying to guess both messages

• Fortunately, there is a simple mitigation
• Alice just replaces lost qubits with new random qubits (random value and basis)
• Negligible overhead, preserves security
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• Some protocols are inherently immune
• BBCS for OT, Kanamori et al*’s authentication

• For some protocols, teleportation mitigates the threat
• Error happens when sharing entanglement -> still recoverable
• Following the procedure suggested in RFC9340

• Use of decoy states
• First proposed by Hwang* for QKD
• Hong et al. propose their use to detect eavesdroppers. 
• Active adversaries are still a threat, requires information on the channel

Mitigations

*Y. Kanamori, Seong-Moo Yoo, D. A. Gregory and F. T. Sheldon, "On quantum authentication protocols," GLOBECOM '05. IEEE Global 
Telecommunications Conference, 2005., St. Louis, MO, USA, 2005, pp. 5 pp.-, doi: 10.1109/GLOCOM.2005.1577930.
*Hwang, Won-Young (1 July 2003). "Quantum Key Distribution with High Loss: Toward Global Secure Communication". Physical Review Letters. 
91 (5): 057901 18



Thanks for your attention.
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• System dynamics described via:

• Emitter decay rate γ: TLS decay in the cavity mode, approx. by lifetime τ of TLS excited state via γ ≈ 1/τ

• Cavity loss rate κ: rate of photons exiting cavity, depends on quality factor Q of resonator via κ ∝ 1/Q

• Coupling strength g0 between TLS and photon, depends on mode volume V0 of resonator: g0 ∝ √1/V0.

• Different cavity designs with different Q and V0, like micropillars or 
photonic crystals, etc.

• Different TLS like quantum dots (QD), vacancy centres, etc.

Transduction Limits
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• Public-key crypto: generate a public and private key
• Anybody can use the public key to encrypt a message
• Only you can use the private key to decrypt it

• Digital signature: generate a public and private key
• Only you can sign a message with your private key
• Anybody can verify your signature with the public key

Crypto Primitives
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• Messages are lost in modern telecom
• TCP/IP stack designed to tolerate losses
• Classically, the solution is simple: retransmit

• Before sending a message, always duplicate it
• Send the copy, keep original for later 

retransmissions
• In TCP, receivers send ACKs for each 

packet
• If no ACK is received for one packet, retransmit

• No threat to classical cryptography
• Classical information is copyable
• Computational hardness is not affected

Retransmissions in classical communication
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Rotation by angle x around the y axis: R(x)

R(x) = exp{-ix * Y/2}

Operator Y=i(|1><0|-|0><1|)

Maps |0> into cos(x/2) |0> + sin(x/2) |1>

Rotations used in public-key scheme
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