

Quantum Internet Addressing

MARCELLO CALEFFI

QUANTUM INTERNET RESEARCH GROUP

FLY: FUTURE COMMUNICATIONS LABORATORY

UNIVERSITY OF NAPLES FEDERICO II

MARCELLO.CALEFFI@UNINA.IT

FLY
Future Communications Laboratory
www.quantuminternet.it

QUANTUM INTERNET RESEARCH GROUP

RESEARCH TOPICS

QIRG Meeting @ IETF 118 Nov. 7th 2023 – Prague (CZ)

DISTRIBUTED QUANTUM COMPUTING

- KEY APPLICATIONS IN THE PANORAMA OF QUANTUM TECHNOLOGIES: BRIDGE TO STEP BEYOND THE CURRENT NISQ ERA
- BY INTER-CONNECTING SPATIALLY DISTRIBUTED QUANTUM PROCESSORS, WE AIM AT ACHIEVING A COMPUTING POWER
 WHICH SCALES EXPONENTIALLY WITH THE COMPUTING RESOURCES

QUANTUM INTERNET PROTOCOL STACK

- DESIGNING AN ABSTRACT MODEL, ENABLING THE STANDARDIZATION BY ABSTRACTING FROM THE PARTICULARS
- PECULIARITIES OF QUANTUM PHENOMENA IMPOSE A MAJOR PARADIGM SHIFT: NO ONE-TO-ONE MAPPING BETWEEN
 CLASSICAL INTERNET AND QUANTUM INTERNET PROTOCOL STACK

ENTANGLEMENT GENERATION AND DISTRIBUTION

- INVESTIGATING THE INTRIGUING GENUINELY QUANTUM PHENOMENA OF ENTANGLEMENT AND QUANTUM COHERENCE IN
 THE PHENOMENA OF SUPERADDITIVITY, SUPERACTIVATION AND CAUSAL ACTIVATION OF QUANTUM CHANNEL CAPACITIES
- FOR GENERATING ENTANGLEMENT IN QUANTUM NETWORKS IN A DISTRIBUTED MANNER.

QUANTUM INTERNET TESTBED

- EXPLOIT CURRENTLY AVAILABLE TECHNOLOGY FOR DISTRIBUTING ENTANGLEMENT VIA METRO-SCALE FIBER NETWORK WITH A COMMUNICATION-ENGINEERING PERSPECTIVE
- LEVERAGING PROOF-OF-CONCEPT DEMONSTRATION AS FEEDBACK FOR ON-GOING RESEARCH ACTIVITIES

· Images: flaticon.com

QUANTUM INTERNET RESEARCH GROUP

ONGOING TESTBED EFFORTS

QUANTUM INTERNET RESEARCH GROUP

SOME RECENT RESULTS

DISTRIBUTED QUANTUM COMPUTING

- "TOWARDS A DISTRIBUTED QUANTUM COMPUTING ECOSYSTEM", INVITED PAPER, IET QUANTUM COMMUNICATION, 2020.
- "COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING". IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2021.
- "OPTIMIZED COMPILER FOR DISTRIBUTED QUANTUM COMPUTING", ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023.
- "DISTRIBUTED QUANTUM COMPUTING: A SURVEY", ARXIV:2212.10609, 2022.

QUANTUM INTERNET PROTOCOL STACK

- "QUANTUM INTERNET: NETWORKING CHALLENGES IN DISTRIBUTED QUANTUM COMPUTING", IEEE NETWORK, 2020.
- "WHEN ENTANGLEMENT MEETS CLASSICAL COMMUNICATIONS: QUANTUM TELEPORTATION FOR THE QUANTUM INTERNET", INVITED PAPER, IEEE TR. ON COM., 2020.
- "QUANTUM INTERNET PROTOCOL STACK: A COMPREHENSIVE SURVEY", COMPUTER NETWORKS, 2022.
- "THE QUANTUM INTERNET: ENHANCING CLASSICAL INTERNET SERVICES ONE QUBIT AT A TIME", IEEE NETWORK, 2022.
- "QUANTUM INTERNET ADDRESSING", IEEE NETWORK, 2023.
- "Architectural principles for a quantum internet", IETF: Internet Engineering Task Force, RFC 9340, March 2023.

ENTANGLEMENT GENERATION AND DISTRIBUTION

- "QUANTUM SWITCH FOR THE QUANTUM INTERNET: NOISELESS COMMUNICATIONS THROUGH NOISY CHANNELS", IEEE JOURNAL. ON SEL. AREAS IN COMM., 2020.
- "HOW DEEP THE THEORY OF QUANTUM COMMUNICATIONS GOES: SUPERADDITIVITY, SUPERACTIVATION AND CAUSAL ACTIVATION", IEEE COM. SUR. AND TUT., 2022.
- "(CAUSAL)-ACTIVATION OF COMPLEX ENTANGLEMENT STRUCTURES IN QUANTUM NETWORKS", ARXIV:2112.00543, DECEMBER 2021.
- "BEYOND SHANNON LIMITS: QUANTUM COMMUNICATIONS THROUGH QUANTUM PATHS", IEEE JOURNAL. ON SEL. AREAS IN COMM., 2023.

 Recommended reading

 This presentation is based on FIY

Future Communications Laboratory www.quantuminternet.it

Classical Internet

- hourglass-shaped architecture
 - protocols @ hourglass waist
 - winners of the (Internet) evolution race

• Image: Steve Deering's plenary talk "Watching the Waist of the Protocol Hourglass" @ IETF 51, Aug 2001

Classical Internet

- hourglass-shaped architecture
 - protocols @ hourglass waist
 - winners of the (Internet) evolution race
 - issues:
 - ossified protocols
 - · haven't been replaced
 - · or significantly evolved
 - for almost 40 years

• Image: Bob Braden' report about IBM 360/370 TCP/IP implementation, Dec. 1979

IP: Internet Protocol

- "..The internet protocol implements two basic functions.."
 - addressing

QIRG Meeting @ IETF 118

Nov. 7th 2023 - Prague (CZ)

- "..internet protocol deals primarily with addresses.."
- fragmentation

IP addresses: "..a distinction is made.."

- a name
 - indicates what we seek
- an address
 - indicates where it is
- a route
 - indicates how to get there

[•] Quotations from J. Postel, "Internet Protocol", STD 5, RFC 791, DOI 10.17487/RFC0791, Sept. 1981.

IP: Internet Protocol

IP addresses: "...a distinction is made.."

- a name
 - indicates what we seek
- an address
 - indicates where it is
- a route
 - indicates how to get there

Quantum Internet Addressing

Existing proposals

- quantumness
 - limited to messages
 - · namely, qubits or entanglement
 - exchanged between nodes
 - · addressed via classical address
 - (underlying assumption)
- routing in a nutshell
 - find a classical path
 - sequence of IP addresses
 - for distributing entanglement
 - between source and destination

IP addresses...

...from a Quantum Internet perspective

Quantum Internet key questions

- quantum name
 - what is that we seek?
- quantum address
 - where is what we seek?
- quantum route
 - how can we get there?

Bipartite Entanglement

IP addresses...

...from a Quantum Internet perspective

Quantum Internet key questions

- quantum name
 - what is that we seek?
- quantum address
 - where is what we seek?
- quantum route
 - how can we get there?

Multipartite Entanglement

11

Addressing Quantum Internet nodes

Entanglement

- intrinsic dissimilarities
 - between
 - classical information
 - · and entanglement
- far beyond
 - the design of some network functionalities
 - they affect the whole protocol stack

Ta	ble	1	

A schematic summary of	the differences arising with quantum bits and quant		
	Bit	Qubit	Entanglement
Temporal	No: can be stored	Yes: irreversibly degrades over time as a consequence of	
constraints	indefinitely	the decoherence process	
Duplication			No: entangled states
	No	Yes: due to the no-cloning	exploited in the network
constraints		theorem	are in a known state, so they
			can be prepared repeatedly
Singleton	Yes: self-contained entities		No: a single entangled qubit is
			useless in the network without
			the awareness of the remaining
			entangled qubits
Scope			Non-local: any processing of a
	Local: any processing affects only the		single entangled qubit
	information available locally at the node		has an instantaneous effect on
			the remaining entangled qubits
State	Nearly stateless:	Stateful:	Profoundly stateful: the
	the node storing	the node storing	node storing the entangled
	the bit does not	the qubit needs to	qubit needs to retain
	need to retain any	retain at least	temporal information and the
	additional information	temporal information	identities of the entangled nodes
Value	Local and pre-determined:		Global and dynamic:
	the encoded information is valuable		the entangled state represents
	only for the destination and not		a valuable resource for any
	for the intermediate nodes		set of nodes sharing it
Order of	Yes, with	Flexible the order:	Flexible:
	a strict ordering:	among the communication	the swapping operation can
operations &	source,	channels traversed	happen simultaneously or
Flow direction	intermediate nodes,	by a quantum information	without any
	destination	carrier, can be indefinite	particular order
Classes	No:		Yes:
	there exist no classes of bits or qubits		with a complex classification

[•] Table from "Quantum Internet Protocol Stack: a Comprehensive Survey", Computer Networks, 2022.

Addressing Quantum Internet nodes

Entanglement-Enabled Connectivity

- richer form of connectivity
 - with respect to classical counterpart
 - e.g.,
 - weaker dependency
 - from instantaneous conditions of the underlying quantum channel
 - unconventional temporal dynamics
 - · due to entanglement depletion
 - redefines the very same concept of topological neighborhood
 - which may change at run time
 - e.g., due to swapping or local operations for multipartite

Quantum Internet Addressing

What if...

- ... we start designing
 - new addressing schemes
 - for the Quantum Internet
 - by properly capturing and tracking
 - the unconventional nature of entanglement-enabled connectivity?
 - ... and ...
 - even better
 - ...we start exploiting quantumness
 - within the address?

14

Questions? Comments? Feedbacks? Advices?